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Abstract

In this paper we investigate the impact of the floating-point precision and interpo-
lation scheme on the results of direct numerical simulations (DNS) of turbulence by
pseudo-spectral codes. Three different types of floating-point precision configura-
tions show no differences in the statistical results. This implies that single precision
computations allow for increased Reynolds numbers due to the reduced amount of
memory needed. The interpolation scheme for obtaining velocity values at parti-
cle positions has a noticeable impact on the Lagrangian acceleration statistics. A
tri-cubic scheme results in a slightly broader acceleration probability density func-
tion than a tri-linear scheme. Furthermore the scaling behavior obtained by the
cubic interpolation scheme exhibits a tendency towards a slightly increased degree
of intermittency compared to the linear one.

Key words: Direct numerical simulations, Spectral methods, Interpolation
methods, Turbulent flows, High-Reynolds-number turbulence, Isotropic
turbulence; homogeneous turbulence
PACS: 47.27.ek, 47.27.er, 02.60.Ed, 47.27 -i, 47.27.Jv, 47.27.Gs

1 Introduction

Due to the increasing speed and memory of computers, numerical simula-
tions of the Navier-Stokes equations have become a valuable tool for studying
turbulence. To investigate the intrinsic properties of turbulence such as the
energy cascade and intermittency one often uses periodic boundary conditions
in order to keep the influence of the geometry on the flow structure as small
as possible. For this kind of turbulence simulations pseudo-spectral codes are
widely used [1–10]. These treat the Navier-Stokes equations in Fourier space
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fields convolutions interpolation

RUN1 double precision double precision tri-cubic

RUN2 single precision double precision tri-cubic

RUN3 single precision single precision tri-cubic

RUN4 double precision double precision tri-linear
Table 1
List of floating-point precision configurations and interpolation schemes for RUN1
– RUN4.

and compute the convolutions in real space. A fast Fourier transformation is
used to switch between the two spaces.

A fundamental feature of turbulence is the inertial range of scales. Within
this range energy solely cascades by the inertial interaction of eddies, which
causes the turbulence to be scale-independent. Attached to this range at small
scales is the dissipation range where dissipative effects are important and damp
the turbulent motion. The size of the inertial range is directly connected to
the Reynolds number Re = V L/ν, where V and L denote the velocity and
size of the large scale motion and ν the kinematic viscosity of the fluid. Many
theories of turbulence deal with an infinite Reynolds number [11] which means
that they focus on the properties of the inertial range. Unfortunately the
Reynolds number Re is connected to the degrees of freedom N of the turbulent
flow according to Re ∼ N9/4. Therefore the memory and speed of computer
limits the achievable Reynolds number and size of the inertial range in direct
numerical simulations.

Nearly all numerical simulations are performed with double floating-point pre-
cision. Recently, the largest numerical simulation worldwide [6] performed on
the Earth Simulator used single precision data for the velocity field and double
precision data for the calculation of the convolution sums in order to reduce
the amount of memory needed. For this reason it was possible to set up a
simulation of 40963 grid points.

In this paper we examine the impact of the floating-point precision on the
numerical results. Therefore we performed simulations using three different
configurations of floating-point precision (see Table 1). The first configuration,
which is the most common approach, computes all fields with double precision
(RUN1). The second corresponds to the configuration on the Earth Simulator
which uses single precision for the velocity fields and double precision for the
convolutions (RUN2). The third uses single precision for all fields (RUN3),
which halves the needed amount of memory compared to RUN1 and therefore
allows for an increased Reynolds number.

Interesting quantities in turbulence are obtained from statistical averages in
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space such as the energy spectrum and Eulerian structure functions or in time
such as the acceleration statistics of passive tracers and Lagrangian structure
functions. Especially for the Lagrangian statistics a lot of effort has been
invested into numerical simulations [7–10] and experiments [12,13] of tracers
and heavy particles and in turbulent flows. The integration of the tracers
(and particles) requires the interpolation of the velocity field at the tracer
positions. In order to obtain reliable Lagrangian statistics it is necessary to
achieve accurate trajectories from the simulations. The crucial point is the
interpolation scheme used. There are three different schemes applied in the
literature. The first is based on cubic splines [7,8], the second is a tri-cubic
scheme [14] and the third a tri-linear scheme [9]. In this paper we investigate
the impact of the interpolation scheme on the Lagrangian statistical results.
The scheme using splines has the drawback that it is difficult to parallelize for
distributed memory computer due to its lack of locality. Most of the current
massive parallel computers are of this type of memory so we will not consider
interpolation schemes using splines. For comparison we performed a simulation
with a tri-cubic (RUN1 – RUN3) and a tri-linear (RUN4) interpolation scheme.

2 The Numerics

The simulations are performed by numerically solving the incompressible Navier-
Stokes equations,

∂tu + (u · ∇)u = −∇p + ν∆u , (1)

∇ · u = 0, (2)

in a periodic cube with 2563 collocation points with a pseudo-spectral method
using spherical mode truncation to reduce aliasing effects [3]. The non-linear
term in (1) would be a convolution in Fourier space and therefore is treated
in real space. The dissipation term can be computed exactly in Fourier space.
The equation of continuity (2) determines the pressure p and is satisfied by
first neglecting the pressure term and afterwards projecting the velocity on its
solenoidal part.

We parallelize the computations via slab geometry. This means every process
holds the data of a sub-slice of the whole cube. The parameters of the simula-
tions RUN1 – RUN4 are listed in Table 2. For the inter-process communication
we use the Message Passing Interface (MPI). The FFTs are performed by the
MPI-parallel C-library FFTW (version 2.1.5) [15]. The time integration of the
velocity field is done by a strongly stable Runge-Kutta third order scheme
[16].

In order to advance the tracers the velocity field has to be interpolated at
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Re u0 ε ν dx η τη L TL N3 Np

1575 0.15 0.0015 0.0002 0.0245 0.0086 0.37 2.1 14 2563 1 · 105

Table 2
Parameters of the numerical simulations. Re: Reynolds number V L/ν, u0 =√
2/3Ek, Ek: kinetic energy, ε: mean energy dissipation rate, ν: kinematic vis-

cosity, η: dissipation length scale (ν3/ε)1/4, τη: Kolmogorov time scale (ν/ε)1/2,
L = (2/3E)3/2/ε: integral scale, TL = L/u0: large-eddy turnover time, N3: number
of collocation points, Np: number of particles

the tracer positions. The velocity field is given on a equally spaced grid and
evolves according to the Navier-Stokes equations. The tracers have to be in-
tegrated at run-time due to the limited amount of hard-disk space. This is
done using the same Runge-Kutta third order scheme as for the integration
of the velocity field. To interpolate the velocity field at the positions of the
individual particles, we implemented a tri-cubic and a tri-linear scheme. The
tri-cubic interpolation relies on prescribing the values of the function, its first,
mixed second and mixed third derivative at the eight corners of the particle
surrounding cubic grid cell (see [17] for the 2D version). For calculating the
derivatives we use a first order centered scheme. The tri-linear interpolation
just needs the values of the function at the corners. Both schemes parallelize
very efficiently.

The turbulence is driven by keeping constant the Fourier modes with 1 ≤
|k | ≤ 2. The starting point of the different runs is the same snapshot of a
statistically stationary flow. Subsequently we injected 1 ·105 particles into the
flow and integrated the system for approximately 4 large eddy turnover times.
The statistics are computed from the last 3 large eddy turnover times for all
runs.

3 Eulerian statistics

A central point of many theories of turbulence [11] are the scaling laws of
the energy spectrum within the inertial range. Figure 1 shows the computed
energy spectra from RUN1 – RUN3. Because of the limited Reynolds number,
no clear scaling range is visible. More important for the purpose of this paper is
the fact that the spectra of the different runs are hardly distinguishable. Even
higher order statistics such as the Eulerian longitudinal structure functions

Sp(l) =
〈
|(u(x + l)− u(x )) · l̂|p

〉
, (3)

angular brackets denoting spatial averaging, look the same for all types of
floating-point precisions (see Figure 2). A more subtle comparison yields the
according Eulerian probability density function (PDF) of velocity increments.
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Fig. 1. Energy spectra from RUN1 – RUN3
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Fig. 2. Eulerian longitudinal structure functions S2, S4 and S6 (see (3)) from top
to bottom from RUN1 – RUN3

Figure 3 shows the PDFs for the variable ux(x + 2dx) − ux(x) normalized to
unit variance. The PDFs differ just within the statistical errors due to the
finite statistical ensemble, but the overall shape is identical. Therefore the
floating-point precision has no impact on the considered Eulerian statistical
properties of turbulent flows. One can suspect that also other Eulerian statis-
tical quantities are unaffected by the underlying floating-point precision.

Now the question will be addressed up to which grid resolution these results
remain true. A rough estimate can be given by determining the threshold at
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Fig. 3. Eulerian probability density function for ux(x + 2dx)− ux(x) from RUN1 –
RUN3, normalized to unit variance
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Fig. 4. Energy spectra for simulations with single floating-point precision reduced
by several bits

which the statistics are affected by the floating-point precision. Starting from
single floating-point precision for all fields we artificially reduced the precision
by cutting off several least significant bits of the mantissa. Figure 4 shows en-
ergy spectra from simulations with single and reduced floating-point precision.
Reducing the floating-point precision by nine bits yields unaffected statistical
results, while a reduction of 11 bits slighty spoils the spectrum. Cutting off 13
bits yields a clearly modified energy spectrum. These findings are similar for
high-order structure functions. The threshold is therefore approximately nine
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Fig. 5. Fluctuating total energy for simulations with single floating-point precision
reduced by several bits

bits which can also be seen from Figure 5. Here the temporal evolution of the
total energy is depicted. Besides the fluctuations, the dynamics are affected
at a reduction of 11 bits.

In order to give an estimate up to which grid size high Reynolds number
simulations can be performed in single precision, where the ratio of the grid
spacing dx to the dissipation length scale η is kept constant, we assume a
Kolmogorov scaling of the energy spectrum. This means that the energy range
will be enlarged by a factor of n5/3 when increasing the grid resolution by a
factor of n in each direction. Enlarging a number by nine bits yields a 512
times larger number. We therefore expect that it is still possible to use single
floating-point precision data with 40963 grid points.

4 Lagrangian statistics

Apart from the Eulerian formulation where the evolution of the velocity field is
considered at fixed points in space, the Lagrangian coordinates follow the fluid
elements in time. Figure 6 shows trajectories of a single particle starting at x
for RUN1 – RUN4. The particles are seeded into the flow at the same time
and same positions for all runs and are followed for approximately 4 large-
eddy turnover times. The trajectories differ substantially. RUN2 stays close
to RUN1 for the longest time as one would expect. The sudden aberration of
RUN2, RUN3 and RUN4 from RUN1 is due to the chaotic character of the
turbulent flow. The trajectory of RUN4 deviates first from the others. This
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Fig. 6. Trajectories of a single particle from RUN1 – RUN4

already implies that the interpolation scheme has a greater impact on the
trajectories than the floating-point precision.

To analyze the impact of differing single particle trajectories on the statistics
of an ensemble of fluid elements we computed the PDFs of the Lagrangian
acceleration (acceleration of fluid elements), which equals the PDF of the
Lagrangian velocity increments

|(u(t + τ)− u(t)) · ê | (4)

for small time increments τ . The velocity increment after a time-lag τ is pro-
jected onto a coordinate axis ê . These PDFs for RUN1 – RUN4 are shown in
Figure 7. The differences between the runs with different floating-point preci-
sions differ just within the statistical fluctuations. The PDF computed with
the tri-linear interpolation in RUN4 is slightly more narrow than the PDF with
the tri-cubic interpolation in RUN1. This is because the tri-cubic interpola-
tion scheme is more capable to follow the trajectories of the nearly singular
structures (vortex tubes) which are presumably responsible for the stretched
tails of the PDFs [12]. As the broadness reflects the degree of intermittency
and the Reynolds number of the turbulent flow [3], the tri-linear interpolation
scheme might underestimate the degree of intermittency. Figure 8 shows the
corresponding Lagrangian structure functions

Sp(τ) = 〈|(u(t + τ)− u(t)) · ê |p〉 , (5)

angular brackets denoting temporal averaging. These functions clearly exhibit
no differences for RUN1 – RUN3, i.e. depending on the floating-point preci-
sion. Concerning the interpolation scheme, the Lagrangian structure functions
slightly differ for RUN1 and RUN4. As for the PDFs, the interpolation scheme
has a small impact on the shape of the measured Lagrangian structure func-
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Fig. 7. PDFs of Lagrangian velocity increments (4) from RUN1 – RUN4, normalized
to unit variance

tions. The inset of 8 shows the logarithmic derivative of the second and fourth
order structure function. Due to the limited Reynolds number no clear scal-
ing region is observable and no absolute scaling exponents can be extracted.
We computed the relative scaling exponents using the assumption of extended
self-similarity (ESS) (see [18]). Figure 9 shows the relative scaling exponents.
Despite the large error-bars the linear interpolation scheme systematically
yields less intermittent statistics than the cubic interpolation scheme. This is
in agreement with the observation concerning the Lagrangian PDFs. The tri-
cubic interpolation scheme results in more stretched tails than the tri-linear
scheme. An increased degree of intermittency is reflected in a more intermit-
tent scaling behavior of the Lagrangian structure functions. The higher the
order of the scaling exponent the larger is the difference between the inter-
polation schemes. High-order structure functions are determined by the most
intense events resulting from the most singular structures in the flow. These
are spiral motions close to strong vortex filaments. Our findings show that the
interpolation scheme has an influence on the computation of the Lagrangian
scaling behavior. It has to be stressed that these findings also remain true for
simulations using less or more collocation points if the ratio of the dissipation
length scale and the grid spacing is similar to that of the simulations presented.
This ratio determines the smoothness of discretized velocity field. For higher
ratios the differences due to the interpolation scheme might become smaller.
However, high Reynolds number simulations commonly use ratios similar to
the one used in this work. Thus, the accuracy of the interpolation scheme will
have an influence on the statistical results independently of the number of
collocation points.
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Fig. 8. Lagrangian structure functions (5) from RUN1 – RUN4, inset: logarithmic
derivative of S2 (bottom) and S4 (top)
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Fig. 9. Lagrangian scaling exponents using ESS for the tri-linear (RUN4) and tri-cu-
bic (RUN1) interpolation scheme

5 Conclusions

We investigated the impact of the floating-point precision and the interpo-
lation scheme on the results of DNS of turbulence by pseudo-spectral codes.
To analyze the influence of the floating-point precision, we performed three
runs. First we used double precision for all fields (RUN1). Second, we used
single precision for the velocity fields and double precision for the convolu-
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tion fields (RUN2), like the currently largest simulation of turbulence on the
Earth Simulator did. The third simulation uses single precision for all fields
(RUN3), which halves the amount of memory needed compared to RUN1 and
therefore allows for an increased Reynolds number. Although the trajecto-
ries of tracer particles differ depending on the floating-point precision which
is due to the chaotic nature of turbulence, the statistical quantities such as
the energy spectrum, the Eulerian and Lagrangian structure functions and
the corresponding PDFs show only minor, negligible differences. Therefore it
is possible to achieve the same statistical results by halving the amount of
memory needed.

The differences according to the interpolation scheme are more pronounced.
Again, the single particle trajectories differ substantially between the tri-cubic
and the tri-linear scheme. Furthermore the Lagrangian PDFs have slightly
differing shapes. The tri-cubic interpolation scheme reflects a higher degree of
intermittency than the tri-linear one. This is because the first is more capable
the resolve the nearly singular structures (vortex tubes). These are responsible
for the intermittency of the flow. The Lagrangian structure functions and their
logarithmic derivative show slightly different shapes and scaling behavior. The
tri-cubic interpolation scheme yields a slightly more intermittent statistic than
the tri-linear scheme.
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