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Abstract

Here we present a new, semidiscrete, central scheme for the numerical solution of
one-dimensional systems of hyperbolic conservation laws. The method presented
in this paper is an extension of the centrally weighted non-oscillatory schemes
(Cweno) presented in [7], [5] and [6]. The method suggested in this manuscript
is derived independently of the order of the scheme. The gain in this new method is
a decreased dissipation especially for high Mach-number flows, which are frequently
encountered, e. g., in astrophysical contexts or turbulent systems.
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1 Introduction

There are many methods available for the numerical solution of hyperbolic
differential equations of the form:

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 (1)

where u(x, t) is a conserved quantity and f(u(x, t)) is a convection flux, which
in most cases is nonlinear.
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Of all the schemes available for the solution of such an equation the central
schemes offer the advantage of simplicity as compared for example to upwind
schemes (see e. g. in [12] or [4]). The first central scheme – the well-known
Lax-Friedrichs scheme (see [3]), however, readily shows the most prominent
problem of central schemes: they suffer from high numerical dissipation as
compared to other (more complex) schemes. This issue was attacked by in-
creasing the order of the scheme (see [9] for the first second order extension
of the scheme and [8] for a third order version of the scheme) yielding a Cen-
trally Weighted Non-Oscillatory Scheme (Cweno ) of high order. Dissipation
for small time-steps was reduced by the introduction of the semidiscrete ver-
sion of these schemes (see [7] for the semidiscrete version of the second order
scheme and [5] for the third order semidiscrete scheme) For high Mach-number
flows, however, the dissipation becomes more and more dominant, due to the
estimate for the Riemann fans getting worse. This could markedly be improved
with a better estimate for the Riemann-fans (see [6]). Even then, however, the
width of the Riemann fans still scales directly with the Mach number for high
Mach number flows, thus, yielding poor results for the latter. Therefore, we
followed the path taken by [6] even further, arriving at a scheme with sig-
nificantly reduced dissipation where the Riemann fans do not depend on the
Mach number of the flow. Especially for high Mach-number flows this scheme,
described in this manuscript, delivers very encouraging results as is demon-
strated with some examples. This feature is valuable for many applications of
numerical schemes to e. g. high Mach-number astrophysical flows, which are
known to frequently exceed Mach-numbers of five (see e. g. [1] or [13]).

2 The classical Cweno scheme

Before introducing the ideas of the new scheme we will briefly describe the
Cweno scheme as presented in former publications. For a more detailed in-
troduction see [7], [5] and references therein.

The basic idea for the classical central schemes is an integration of Eq. (1)
over one small cell of width ∆x and a small time-step ∆t. Such an integra-
tion leads to an evolution equation for the cell average of the quantity u(x, t).
This equation usually gives the cell average at the new time-step against the
cell average at the previous time-step and the fluxes at the cell boundaries.
To obtain the quantities at the cell boundaries one also needs a piecewise
polynomial reconstruction, which regains point-values from the cell averages
– yielding different functions for each individual cell. For a first-order piece-
wise linear reconstruction one obtains the Lax-Friedrichs scheme given on a
staggered grid.

Due to the different reconstructions in each cell one formally has a disconti-
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nuity at each cell boundary. To avoid having to compute the exact solution
of the corresponding Riemann-problems one, therefore, introduces the above
integration over the whole region containing this Riemann fan.

While the integration for this averaging in the Lax-Friedrichs scheme is per-
formed from cell centre to cell centre, in the Cweno scheme the averaging
over the Riemann fan is done over a much smaller region. To achieve this, Eq.
(1) is integrated over the volume containing the Riemann fans and over the
undisturbed volume separately. By this, the dissipation can be significantly di-
minished, since only for the region containing the Riemann fan an averaging is
applied, whereas the result for the undisturbed part of the cell is exact. Instead
of an evolution equation for the cell average of the entire cell the integration
over these sub-volumes and one time-step yields an evolution equation for the
cell averages of the sub-volumes. By a projection of these local cell averages
at the next time-step onto the original grid and the transition ∆t → 0 one
finally arrives at a semidiscrete evolution scheme for the cell averages, which
does not require a staggered grid anymore. The semidiscrete scheme is simply
the approximation of the fully discrete scheme in the limit ∆t → 0 by:

d

dt
ui(t) = lim

∆t→0

un
i − un

i−1

∆t
(2)

The semidiscrete version of a Cweno scheme does not suffer from the accu-
mulation of excessive dissipation for small time-steps as a fully discrete scheme
would do. The time-step size of the latter are smaller due to a restricted CFL-
condition ∆t ∝ (∆x)2 – as opposed to the convective CFL-condition used in
semidiscrete schemes. This small time-step size leads to an accumulation of
the numerical dissipation as is argued in [7].

Concluding we remark, that the essential ingredient of the Cweno scheme,
which leads to a major improvement over the staggered grid schemes like e. g.
the Lax-Friedrichs, is the reduction of the averaging region containing the
Riemann fan. It will, however, be discussed in the next section that the width
of this region in the previous Cweno schemes is hugely overestimated for
high Mach number flows. The scheme introduced in this article shows how
to eliminate this shortcoming, giving a new scheme with minimised averaging
regions based on the previous Cweno scheme.

3 The new scheme

The Cweno scheme described briefly in the preceding section is robust, essen-
tially non-oscillatory, one whose main feature is its simplicity. In consecutive
publications its inventors suggested less and less dissipative schemes. Part of

3



Fig. 1. Typical Riemann fan structure for high Mach number flow.

this goal was achieved by increasing the order of the piecewise reconstruction
of point values from the cell averages (see, e. g. [5] for the step from second
to third order).

A major part of the dissipation inherent in the Cweno scheme is, however,
connected to the width of the regions assumed to contain the Riemann fans.
The dissipation was markedly reduced again, when the estimate for the extent
of the Riemann fans was refined in [6]. In this publication the authors distin-
guished the possible propagation speed of the Riemann fans to the left and to
the right. If, e. g., the velocity of a fluid to be computed exactly equals the
maximum propagation speed of any signal in the fluid a shock can not propa-
gate upstream, and the region over which the averaging for the Riemann fans
is is applied extends only into one cell. In the case, where the distinction of the
propagation direction is not made the averaging region extends symmetrically
into both cells under consideration. Thus, this region is twice as wide as for
the refined scheme.

If the scheme is, however, applied to high Mach number flows, the flow velocity
on average exceeds the maximum propagation speed of signals in the fluid.
Then the width of the regions over which the integration takes place is roughly
given by the speed of the flow times the time-step (or rather twice that value
if the directional distinction is not made). The actual width of the region
where the shock can possibly be is, however, only two times the maximum
signal propagation speed times the time-step. Since this differs markedly from
the assumption in the Cweno scheme, we felt that it might be interesting to
pursue the approach from [6] a little further in search of a scheme with even
less dissipation.
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To motivate our new approach one can imagine a typical flow structure of a
conservative system of equations as given in Fig. 1. What is depicted there is
the case for a supersonic flow directed to the right. The cell under consideration
with centre at xi has boundaries at xi−1/2 and xi+1/2 The two horizontal lines
indicate two successive time-steps. The average flow velocity at the boundary
of the cell at the first of these time-steps is indicated by the solid line as the
position taken by a particle convected with that velocity. In the same way
the maximum propagation speed of signals are indicated as the dashed lines
– clearly we are discussing supersonic flow.

The region in which the averaging over the Riemann fans is carried out in
the Kurganov et al.- version (see [6]) of the scheme is indicated as the filled
rectangle on each boundary of the cell. The position of a possible discontinuity,
which gives rise to the idea of the averaging, however, can only be found
between the dashed lines. Therefore, we suggest an alternative derivation of
the Cweno scheme, where the domains over which the integration takes place
are not rectangular any more.

Here we perform the averaging instead over the shaded parallelogram regions
indicated in Fig. 1. The main difference is, that the position of the boundaries
for the integral over the spatial domains now depend on time. The width of
the Riemann fans, however, is given only by the maximum signal propagation
velocity so that the background flow does not change the width of the fans –
in contrast to the other schemes.

For these regions one can derive a scheme very similar to the others when
using exactly the same steps as were used for the established Cweno scheme:
first we integrate the regions of smooth flow and the regions which might
hold discontinuities separately. Then we obtain a new reconstruction for these
regions and finally project all this back onto the desired spatial grid. The first
step in this scheme is the integration of the different regions. This is done in
the following section for the smooth and discontinuous regions separately.

3.1 Integration of the discontinuities

Since the averaging is to take place over a region inclined with the local aver-
age velocity we have to deal with smaller Riemann-fans than they are used in
the established Cweno scheme for high Mach-number flows. Here the width
of the Riemann fans is basically given by twice the maximum signal propaga-
tion velocity (possibly running to the left or to the right) – behold that this
signal propagation is only possible relative to the average fluid velocity). In
subsequent computations we will use the following conventions for the different
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velocities:

v0
i−1/2 → local average velocity

a±i−1/2 → right (left) maximum signal velocity relative to local mean flow
(3)

As mentioned already, the solution can only be discontinuous in the hatched
parallelogram regions. Assuming the velocities are constant for a small time
dt time the region is given by:

[xn
i−1/2,l , xn

i−1/2,r] = (4)[
xi−1/2 − a−i−1/2∆t + v0

i−1/2(t− tn) , xi−1/2 + a+
i−1/2∆t + v0

i−1/2(t− tn)
]

So we see that the region is shifted to the right with the corresponding average
velocity. For the integration over this particular region and the time interval
[tn, tn+1] one has to keep in mind, that we have to do the spatial integration
first due to the dependence of its boundaries on time. Integration of Eq. (1)
over space and time then yields:

tn+1∫
tn


xi−1/2,r(t)∫

xi−1/2,l(t)

∂

∂t
u dx

 dt = −
tn+1∫
tn


xi−1/2,r(t)∫

xi−1/2,l(t)

∂f

∂x
dx

 dt (5)

To evaluate the left-hand side of this equation we have to use:

d

dt

b(t)∫
a(t)

g(x, t)dx =
db

dt
g(b, t)− da

dt
g(a, t) +

b(t)∫
a(t)

∂

∂t
g(x, t)dx (6)

For our case this translates into:

tn+1∫
tn


xi−1/2,r(t)∫

xi−1/2,l(t)

∂

∂t
u dx

 dt

=

tn+1∫
tn

 d

dt

xi−1/2,r(t)∫
xi−1/2,l(t)

u(x, t) dx

 dt

−
tn+1∫
tn

(
u(xi− 1

2
,r, t)

d

dt
xi− 1

2
,r − u(xi− 1

2
,l, t)

d

dt
xi− 1

2
,l

)
dt

6



=

xi−1/2,r(tn+1)∫
xi−1/2,l(t

n+1)

u(x, tn+1) dx−
xi−1/2,r(tn)∫

xi−1/2,l(t
n)

u(x, tn) (7)

−
tn+1∫
tn

(
v0

i−1/2

[
u(xi− 1

2
,r, t)− u(xi− 1

2
,l, t)

])
dt

due to the dependence of the domains on time. Here the terms containing v0
i−1/2

are introduced due to the time dependence of the cell boundary positions.
Then we find using Eqs. (7) and (5) (and designating the average for this
region at time tn+1 as ω̄n+1

i−1/2):

tn+1∫
tn


xi−1/2,r(t)∫

xi−1/2,l(t)

∂

∂t
u dx

 dt (8)

= (xi−1/2,r(t
n+1)− xi−1/2,l(t

n+1))ω̄n+1
i−1/2 −

xi−1/2,r(tn)∫
xi−1/2,l(t

n)

u dx

−
tn+1∫
tn

(
v0

i−1/2

[
u(xi−1/2,r(t))− u(xi−1/2,l(t))

])

=−
tn+1∫
tn


xi−1/2,r(t)∫

xi−1/2,l(t)

∂f

∂x
dx

 dt

Here the boundaries of the region are given by:

xi−1/2,l(t) = xi−1/2 − a−i−1/2∆t + v0
i−1/2(t− tn)

xi−1/2,r(t) = xi−1/2 + a+
i−1/2∆t + v0

i−1/2(t− tn) (9)

as was given in Eq. (4) With this in mind we also perform the flux integration,
thus arriving at an intermediate result for the local average at the next time-
step tn+1:

ω̄n+1
i−1/2 =

1

xi−1/2,r(tn+1)− xi−1/2,l(tn+1)

( xi−1/2,r(tn)∫
xi−1/2,l(t

n)

u dx

+

tn+1∫
tn

(
v0

i−1/2

(
u(xi−1/2,r(t))− u(xi−1/2,l(t))

))
dt
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−
tn+1∫
tn

(
f(u(xi−1/2,r, t))− f(u(xi−1/2,l, t))

)
dt

)

=
1

xi−1/2,r(tn+1)− xi−1/2,l(tn+1)

( xi−1/2∫
xi−1/2,l(t

n)

pn
i−1 dx +

xi−1/2,r(tn)∫
xi−1/2

pn
i dx

−
tn+1∫
tn

(
f(u(xi−1/2,r, t))− v0

i−1/2u(xi−1/2,r(t))
)
dt

+

tn+1∫
tn

(
f(u(xi−1/2,l, t))− v0

i−1/2u(xi−1/2,l(t))
)
dt

)
(10)

Here we introduced the representation of the quantity u by a polynomial pn
i

given for each individual cell. For the region under consideration we have
to deal with two different polynomials, since we are considering a domain
extending into two neighbouring cells.

Apart from the additional flux-terms v0
i−1/2u(xi−1/2,i(t)) this result looks famil-

iar when consulting the previous publications (see e. g. [6]). The interpretation,
however, is quite different: on the one hand the cell average ω̄n+1

i−1/2 is not given
at the same location as ω̄n

i−1/2. On the other hand one has to evaluate the flux
integral for time-dependent boundaries.

Keeping this in mind the integral for the central part of the cell can be com-
puted in the same way resulting in the expression:

ω̄n+1
i =

1

xi+1/2,l(tn+1)− xi−1/2,r(tn+1)

( xi+1/2,l(t
n)∫

xi−1/2,r(tn)

pn
i dx +

−
tn+1∫
tn

(
f(u(xi+1/2,l, t))− v0

i+1/2u(xi+1/2,l(t))
)
dt

+

tn+1∫
tn

(
f(u(xi−1/2,r, t))− v0

i−1/2u(xi−1/2,r(t))
)
dt

)
(11)

We note the following:

• Considering the above equation for an exclusive transport case motivates
the validity of the formula. If for example only the velocities at the upper
and lower cell boundary differ, with the flux in the cell being constant, then
the dominant effect is the increase or decrease of the cell average ω̄ due to
the different size of the cell at times tn and tn+1.

• The velocity suggested to be chosen for v0
i±1/2 is the local average velocity
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as was mentioned above. It is, however, also possible to use a more global
choice. For example for a global background flow velocity would also be an
appropriate choice for this. This would then keep the cell sizes constant and
yield a less dissipative scheme at the same time.

• Remember that a±i−1/2 designates the local maximum signal propagation

velocity relative to the local background flow velocity v0
i−1/2.

• In the limit of high Mach numbers the velocities a±i−1/2 can be directly given
as the maximum signal propagation velocity. Otherwise there usually is a
different local velocity obtained from the reconstruction in adjacent cells.
This has to be taken into account, by adding the maximum difference from
the average velocity to the maximum signal propagation velocity.

The next step in the classic Cweno scheme would be the projection back
onto the original grid, where the conservation property of the reconstruction
for the central part of the cell is used when obtaining new cell averages. With
the inclined averaging regions for the Riemann-fans, however, this means that
we have to project onto shifted cells, with the shift of their corresponding
boundaries given by the local velocities v0

i±1/2.

Then again it would also be possible to project the local averages back onto
the original unshifted grid. This would, however, be more involved due to the
shift of the cells and due to the fact, that the conservation property for the
central part of the cell can not be used anymore in most cases – for example
the conservation property of the reconstruction for the central part of the cell
is of no use whenever this region has to be projected onto more than one of
the cells (i. e. whenever v0

i+1/2 > a−i+1/2 or v0
i−1/2 < −a+

i−1/2). To retain the
simplicity of the Cweno scheme we will here omit the discussion of such a
projection onto the original grid.

First we project the values not onto the actual grid, but onto the transported
grid, thus, obtaining cell averages for a not necessarily homogeneous grid.
The cell averages can then be projected back onto the original grid whenever
necessary. For this one would use an additional reconstruction step, where the
full order of the reconstruction has to be used to keep the desired order of the
scheme.

The width and position of the grid cells at the next time-step becomes clear
from Fig. 1 and from Eq. (4). With the local transport velocity v0 this reads:

In+1
i = [xn+1

i+1/2 − xn+1
i−1/2] = [(xn

i+1/2 + v0
i+1/2∆t)− (xn

i−1/2 + v0
i−1/2∆t)] (12)

To be able to project the local cell averages onto this grid we use a polynomial
reconstruction for time-step tn+1: we construct a new non-oscillatory global
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piecewise interpolant from the local cell averages at time tn+1 as:

ω̃n+1(x) =
∑

i

(
ω̃n+1

i−1/2(x)χ[xn+1
i−1/2,l

...xn+1
i−1/2,r

] + ω̃n+1
i (x)χ[xn+1

i−1/2,r
...xn+1

i+1/2,l
]

)
(13)

From this we obtain the cell averages on the shifted grid by:

ūn+1
i =

1

∆̃x

xn+1
i+1/2∫

xn+1
i−1/2

ω̃n+1(x) dx (14)

where ∆̃x is the width of the shifted cell In+1
i . Since we are interested in

the semidiscrete version of the scheme we proceed by expressing the time
derivative by:

d

dt
ūi(t) = lim

∆t→0

ūn+1
i − ūn

i

∆t
= lim

∆t→0

 1

∆̃x

xn+1
i+1/2∫

xn+1
i−1/2

ω̃n+1(x) dx− ūn
i

 (15)

where one has to keep in mind, that un+1 is given at another position on the
spatial grid than un.

For this we need to evaluate the integrals over the smooth and non-smooth
parts of the shifted cells. Due to the conservation property of the reconstruc-
tion for the smooth part of the cell (in the shifted frame) we have:

1

xi+1/2,l(tn+1)− xi−1/2,r(tn+1)

xi+1/2,l(t
n+1)∫

xi−1/2,r(tn+1)

ω̃n+1
i (x) dx = ūn+1

i (x) (16)

Apart from that for the non-smooth parts of the cell the limited width of the
Riemann-fans in the limit dt → 0 leads to the result:

ω̃n+1
i±1/2(x) = ω̄n+1

i±1/2(x) +O(∆t) (17)

Thus, we find in the semidiscrete limit (dt → 0):

d

dt
ūi(t) = lim

∆t→0

1

∆t

(
Li ∩ In+1

i

∆̃x
ω̄n+1

i−1/2 +
Cn+1

i

∆̃x
ω̄n+1

i (18)

+
Ri ∩ In+1

i

∆̃x
ω̄n+1

i+1/2 − ūn
i

)
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where In+1 indicates the shifted cell at tn+1. The individual domains needed
here are given in the semidiscrete limit as:

Li ∩ In+1
i = xi−1/2,r(t

n+1)− xi−1/2(t
n+1) = a+

i−1/2 (19)

Cn+1
i = xi+1/2,l(t

n+1)− xi−1/2,r(t
n+1) (20)

Ri ∩ In+1
i = xi+1/2(t

n+1)− xi+1/2,l(t
n+1) = a−i+1/2 (21)

What is still missing are the cell averages for the smooth and non-smooth
regions. Beginning with the latter of those (here we have to keep in mind that
we have Ri−1 = Li) we find by usage of Eq. (10):

lim
∆t→0

ω̄n+1
i−1/2 =

a−i−1/2u
−
i−1/2 + a+

i−1/2u
+
i−1/2

(a+
i−1/2 + a−i−1/2)

−
(f(u+

i−1/2)− v0
i−1/2u

+
i−1/2)

(a+
i−1/2 + a−i−1/2)

+
(f(u−i−1/2)− v0

i−1/2u
−
i−1/2)

(a+
i−1/2 + a−i−1/2)

(22)

The computation for the central part is a little more involved and can be
shown to yield:

lim
∆t→0

ω̄n+1
i =

ūn
i ∆x− (a+

i−1/2u
+
i−1/2 + a−i+1/2u

−
i+1/2)∆t

(xi+1/2,l(tn+1)− xi−1/2,r(tn+1))

−
(f(u−i+1/2)− v0

i+1/2u
−
i+1/2)

(xi+1/2,l(tn+1)− xi−1/2,r(tn+1))
∆t

+
(f(u+

i−1/2)− v0
i−1/2u

+
i−1/2))

(xi+1/2,l(tn+1)− xi−1/2,r(tn+1))
∆t (23)

Both of these can be recast into:

lim
∆t→0

ω̄n+1
i−1/2 =

ã−i−1/2u
−
i−1/2 + ã+

i−1/2u
+
i−1/2

(a+
i−1/2 + a−i−1/2)

−
(f(u+

i−1/2)− f(u−i−1/2))

(a+
i−1/2 + a−i−1/2)

(24)

lim
∆t→0

ω̄n+1
i =

ūn
i ∆x− (ã+

i−1/2u
+
i−1/2 + ã−i+1/2u

−
i+1/2)∆t

(xi+1/2,l(tn+1)− xi−1/2,r(tn+1))

−
(f(u−i+1/2)− f(u+

i−1/2))

(xi+1/2,l(tn+1)− xi−1/2,r(tn+1))
∆t (25)

where we introduced the velocities:

ã+ = a+ + v0 and ã− = a− − v0 (26)
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for each of the positions in the numerical scheme. These are essentially the
absolute maximum signal propagation velocities – that is these are given in
the absolute frame and not relative to a possible background flow.

Consequently, we find:

lim
∆t→0

1

∆t

(
Cn+1

i

∆̃x
ω̄n+1

i − ūn
i

)
= −

ã+
i−1/2u

+
i−1/2 + ã−i+1/2u

−
i+1/2

∆̃x

−
(f(u−i+1/2)− f(u+

i−1/2))

∆̃x
+

1

∆t

(
∆x

∆x̃
− 1

)
ūn

i (27)

and:

1

∆t

(
∆x

∆x̃
− 1

)
ūn

i =
(
v0

i+1/2 − v0
i−1/2

)
ūn

i (28)

Inserting this, together with the results for the other terms obtained above,
into Eq. (18) yields:

d

dt
ūi(t) = −

Hi+1/2 −Hi−1/2

∆̃x
+
(
v0

i+1/2 − v0
i−1/2

)
ūn

i (29)

where we introduced:

Hi+1/2 =−
ã+

i+1/2a
−
i+1/2u

+
i+1/2 − a+

i+1/2ã
−
i+1/2u

−
i+1/2

a+
i+1/2 + a−i+1/2

+
a+

i+1/2f(u−i+1/2) + a−i+1/2f(u+
i+1/2)

a+
i+1/2 + a−i+1/2

(30)

Obviously we found a result very similar to that for the classical Cweno
scheme. The main differences are that we have to distinguish between the two
different kinds of velocities and that the resulting changes are given for the
shifted grid. Also the correction term

(
v0

i+1/2 − v0
i−1/2

)
ūn

i has to be included.
This term ensures change of the cell average, whenever the cell size is modified.

We note:

• The resulting evolution requires a moving, generally non-uniform grid. The
cell averages at the next time-step are in general given at a shifted position.
This shift depends on the velocity v0 at the individual cell boundaries. This
usually poses no problems (for limits on this see section 5). The main limi-
tation in a one-dimensional computation is that one has to take the varying
sizes of the individual cells into account, when computing the reconstruc-
tion for the next time-step. Whenever an output on an equidistant grid is
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desired or the individual cells get too big or too small the results can be
projected back to the original grid.

• The shift of each individual cell is given by:

δxi−1/2 =

t∫
t0

v0
i−1/2(t)dt (31)

for the lower boundary of cell Ii. From this the actual size of the corre-
sponding cell is easily computed.

• Alternatively the projection back onto the equidistant grid can be performed
after each successfully completed time-step. Such a scheme would, however,
become more complicated.

• The velocity v0 at the boundary of the individual cell does not have to be
the local average - one could also use a global average instead. This does
not change the above results at all.

• The CFL condition for the above scheme to remain mathematically sensible
is obtained by the fact, that the regions containing the Riemann fans must
not intersect. This is ensured by:

∆t <
∆x

2

1

max(a±)
(32)

whereas the previous Cweno schemes had to use max(a± + v0) instead
of max(a±). This advantage is, however, put into perspective, when taking
into account, that the varying size of the grid cells in the new scheme effects
a smaller ∆x for some cells as compared to the unmodified grid.

This concludes the derivation and description of the scheme. To motivate the
usefulness of the scheme we will now discuss a few illustrative test-cases.

4 Test problems

Since the scheme developed in this manuscript is a strict one dimensional
scheme, we only discuss a few one dimensional tests. Despite the fact that
linear transport is solved exactly by this scheme we will nonetheless start our
discussion by this to show its power. Please be aware that all of the following
test problems are given in non-dimensional form.

4.1 Linear transport

For a strictly linear transport problem, which is quite often employed to deter-
mine the order of a numerical scheme the scheme presented in this manuscript
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Fig. 2. Resulting density profiles for the linear transport problem of a box like
density enhancement for the classical (left) and the new (right) Cweno scheme.

is naturally dissipation free. This is due to the fact that the flux for linear
transport is equivalent to the global mass flux ṽu in Eq. (30). Therefore, all
the terms cancel for all individual cells, thus, leaving all cell averages un-
changed. The only change resulting in linear transport is the transport of the
cell boundaries all with the same velocity. This means that the initial profile is
just transported along with the desired velocity as is to be expected in linear
transport. The initial conditions corresponding to this problem simply read:

ρ(x) =

 1.5 if x ≥ 0.25 ∩ x ≤ 0.75

1 else
(33)

with a constant velocity v = 1.

In Fig. 2 the result of such a computation is compared to the result obtained
using the classical Cweno scheme. Here an initial box-like density enhance-
ment was transported from x = 0.5 to x = 1.5 with a velocity of v = 1. The
results in Fig. 2 are shown at a time t = 1. For both simulations we chose the
time-step to be 0.01 which yields a CFL-number (being defined as the ratio
of the distance travelled by a signal in one time-step to the size of a grid cell)
of 0.16 for a decomposition of the computational domain into 16 cells. Clearly
there is no dissipation when using the new method as can be expected from
the scheme.

The next test was a little more involved. As a result it showed the strength
and at the same time the weakness of the scheme, leading to the conclusion,
that the scheme is especially suited for high Mach number flows.
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4.2 Strong shock tube

The second test is a modification of the shock tube problem first used by Sod
[10]. Here we used the strong shock tube problem (see [2]) with the initial
condition:

[ρ(x), p(x)] =

 [10, 100] if x < 0.5

[1, 1] if x ≥ 0.5
(34)

In this test the resulting gradients are even stronger than in the classical shock
tube problem. The above was used as the initial condition for the 1-D Euler
system:

∂

∂t

ρ =− ∂

∂x

s (35)

∂

∂t

s =− ∂

∂x

(
s2/ρ + p

)
(36)

∂

∂t

e =− ∂

∂x

((e + p) s/ρ) (37)

where ρ is the mass density, s is the mass flux s = ρu and e is the total energy
density. In one of our simulation this system was subjected to a high Mach
number initial background flow to directly visualise the problems inherent in
the classical scheme concerning high Mach number flows. For this we chose
a flow velocity of v0 = 20. With the initial configuration yielding a speed of
sound of cs = 3.74 to the left of the contact discontinuity and cs = 1.18 to
the right, this choice for the flow velocity corresponds to Mach numbers of 5.3
and 16.9 respectively. Clearly, this kind of background flow can be eliminated
by a Galilei-transformation. This however is not possible in the general case.
With the need to compare the results to an analytical solution, however, we
needed to use a constant background flow.

The system was solved for 0 ≤ x ≤ 1 at t = 0 and integrated up to t = 0.08.
Here the time evolution is carried out using the third order explicit Runge-
Kutta method, where the time-step was chosen as 5 · 10−5 as to give a CFL
number < 0.2 at all times. Initially we used a size of 5 · 10−3 for each grid cell,
which is modified when using the new scheme.

At time t = 0.08 a strong rare-faction wave, a contact discontinuity and a
strong shock (from left to right in figures 3 and 4 respectively) have developed.
In both figures we show a comparison of the solutions obtained with and
without the background flow to the analytical solution.
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Fig. 3. Resulting density distribution for the strong shock tube problem at time
t = 0.08 using the classical Cweno scheme. Here we compare the solution with
(left) and without (right) background flow to the analytical solution (solid line).

The results shown in Fig 3 were obtained using the classical Cweno scheme
with a second order reconstruction. The solution without background flow
(left) shows the ability of the scheme to nicely reproduce discontinuities. The
solution on the right, however, clearly shows the dependence of the solution
on the speed of the background flow. Obviously the solution in the right part
of the domain is poorly resolved: the density in the region between the contact
discontinuity and the shock never gets near the analytical value anymore.

The reason for the solution on the left hand side of the contact discontinuity
to be better than on the right hand side is given by the arguments in the
introductory discussion: the Mach number for the background flow is higher on
the right side of the discontinuity than on the left, which is due to the higher
sound speed on the left as compared to the right side: in the unperturbed
regions the Mach number clearly sticks to the initial value. In the vicinity of
the discontinuity, however, the Mach number rises due to the rising pressure to
a value between 5 and 8 in the region of the discontinuity and the rare-faction
wave.

Keeping all this in mind Fig. 3 clearly confirms the weakness of the Cweno
scheme in handling high Mach number flows.

For the new scheme we used the identical second order reconstruction as for
the classical Cweno scheme. The corresponding results are finally illustrated
in Fig. 4 in the same way as we gave the results for the old scheme. With the
crosses indicating the position of the cell centres the propagation of the cells
becomes clearly visible. In this computation we did never project the data
back onto the original grid. This leads to the depletion of grid-points in the
region left of the contact discontinuity. Due to this depletion the result for that
region is inferior to the computation using the classical Cweno scheme, when
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Fig. 4. Resulting density distribution for the strong shock tube problem at time
t = 0.08 using the new Cweno scheme. Here we compare the solution with (left)
and without (right) background flow to the analytical solution (solid line).

no background flow is present. In the region right of the contact discontinuity,
however, the grid-points are piled up leading to superior results in that region.
Here one has to keep in mind, that the velocity at the boundaries of the grid
cells is not only given by the background velocity but by the sum of this and
the local velocity – thus, there is also a redistribution of the cells when now
background flow is present.

Yet the most important result visible in Fig. 4 is the expected fact, that the
solution is completely independent of the background flow: the solution does
not change at all, when a high Mach number background flow is present.
Therefore, we were able to confirm that the numerical dissipation for this
scheme is entirely independent of the Mach number of any background flow.

Above all, it is also evident, that the results for high Mach number flows are
much better using the new scheme. Especially in the region to the right of the
contact discontinuity the solution for the classical Cweno scheme becomes
poor for high Mach number flows. The new scheme, however yields consistently
very accurate solutions for this region.

5 Restrictions

For the above test cases the solutions were computed solely on the co-moving
grid without ever projecting it back to the original grid. This was done to keep
the scheme as simple as the classical Cweno scheme. As became apparent in
the second test-case, however, gradients of the velocity cause a depletion of
grid-points in some regions and an accumulation of grid-points in other regions.
This leads to in inferior results, where grid-points are depleted and in superior
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results in regions with more grid-points.

A higher density of grid-points, however, also affects the CFL number, since
this contains the inverse of the cell width. This effect is partly compensated
by the fact, that the local average velocity is not included in the CFL number
anymore.

Both these problems can be addressed by a modification of the scheme, where
the computation is performed on the regular grid. In this case, however, the
resulting scheme becomes more complex than the classical Cweno scheme.
Therefore, this matter is not discussed in this paper any further and will be
left for future publications.

One additional point to make is that due to the two problems mentioned
above the scheme is not as easily applicable to all hyperbolic problems as was
the classical Cweno scheme. When all the computations are realised on the
co-moving grid, e. g. Burgers equation can not be adequately solved by the
scheme. This is due to the fact, that all grid points are advected into the
discontinuities and cover an infinitely small region. This, also, would pose no
problem anymore for a scheme living only on a regular grid.

The computation on a regular grid is also a necessary ingredient for the ex-
tension of the scheme to more than one dimension. In this case the scheme
can easily be extended e. g. using the dimension by dimension approach also
used in [5]. This issue, however, is left for future publication.

6 Conclusion

Here we presented an improvement of the Cweno scheme, which proved very
reliable in resolving discontinuities resulting from the solution of conservative
systems of differential equations. The improvement is a more precise estimate
of the width of the Riemann fans over which a spatial averaging is carried
out in the derivation of the scheme. We were able to show how this leads
to a scheme, which is in contrast to previous versions of the Cweno scheme
entirely independent of any background flow. Therefore, the new scheme is
especially suited for the computation of high Mach number flows as they are
frequently encountered in astrophysical flows.

Furthermore we were able to show, that the scheme computes linear transport
entirely free of numerical dissipation. Also the results for discontinuities in the
flow for the solution of the Euler equation could be shown to be very accurate
even in low Mach number simulations.
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The scheme proposed in this paper enjoys the advantage of simplicity as the
previous versions of the Cweno scheme: it is as easily implemented as was
the classical Cweno scheme before. The overall structure of the equations
to be integrated numerically differs only marginally from those of the classi-
cal scheme, but the differences are quite strong since the results have to be
considered to be on a moving grid in the new scheme.

The new scheme, when computed exclusively on the co-moving grid, combines
features of a fully Lagrangian scheme with the ideas of the classical Cweno
scheme. Unfortunately, however, it is not as versatile as the classical Cweno
scheme. To obtain an equally versatile scheme one has to switch over from
the fully Lagrangian picture to a semi-Lagrangian picture (see e. g. [11]) i. e.
the projection onto a non moving grid has to be added to the scheme. This,
however, is left for future publications.
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