
Racoon: A Parallel Mesh-Adaptive

Framework for Hyperbolic Conservation Laws

J. Dreher and R. Grauer

Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract

We report on the development of a computational framework for the parallel,
mesh-adaptive solution of systems of hyperbolic conservation laws like the time-
dependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics
(MHD) and similar models in plasma physics. Local mesh refinement is realized by
the recursive bisection of grid blocks along each spatial dimension, implemented
numerical schemes include standard finite-differences as well as shock-capturing
central schemes, both in connection with Runge-Kutta type integrators. Parallel
execution is achieved through a configurable hybrid of POSIX-multi-threading and
MPI-distribution with dynamic load balancing. One- two- and three-dimensional
test computations for the Euler equations have been carried out and show good
parallel scaling behavior. The Racoon framework is currently used to study the
formation of singularities in plasmas and fluids.

Key words: AMR, mesh refinement, hybrid parallelization, multithread, MPI,
load balancing

1 Introduction

Adaptive mesh refinement (AMR) techniques have become increasingly pop-
ular in recent years for the numerical investigation of dynamic phenomena
in fluid dynamics and plasma physics. The underlying idea, as described by
Berger and Colella in the context of shock hydrodynamics [1], is to provide a
certain spatial resolution of the computational grid that is necessary for the
desired accuracy of the solution locally by introducing a hierarchy of subgrids

Email addresses: dreher@tp1.rub.de (J. Dreher), grauer@tp1.rub.de (R.
Grauer).

Preprint submitted to Elsevier Science 4 February 2005

of different sizes and spatial resolutions to cover different regions of the do-
main. As many problems involve or develop localized small scale structures,
it is then possible to compute such critical regions on finer grid blocks while
other parts of the domain are well represented on coarser blocks, which can
drastically reduce the computational costs compared to using a fine grid in the
entire domain. As the system evolves dynamically, with small-scale structures
likely to form, move and disappear, their coverage by the recursively refined
blocks must be adjusted appropriately in order to ensure proper local resolu-
tion. Following this strategy, the computational expenses in terms of memory
and CPU usage can easily be reduced to a few percent compared to corre-
sponding simulations based on fixed grids in which the resolution is dictated
by the finest structures [12] whenever the phenomena under investigation ex-
hibits strongly localized structures like shocks, near-singularities, boundary-
or interface layers and the like.

Successful fluid dynamical and plasma physical applications of this approach
today already cover a wide spectrum, including the problem of magneto-
convection in the solar atmosphere [22], the formation of singular current
sheets in magneto-hydrodynamics [4],[7] and vortex tubes in hydrodynamics
[8], the propagation of solar coronal mass ejections through the heliosphere
and their interaction with the Earth’s magnetosphere and ionosphere [9], and
accretion phenomena in astrophysics [26]. As AMR is merely a supportive
technique to improve the economy of computations, a more widespread us-
age in many different fields can be expected for the future, which, of course,
is connected to the progress being made in related areas, e.g. the use of re-
fined physical models, the improvement in numerical methods, and the gain
in computational power through modern parallel hardware architectures.

Given these promising perspectives on the one hand and the fact that sig-
nificant progress occurs in the quite specialized disciplines named above, an
obvious challenge is the development of programming environments that com-
bine such modern computational techniques with a degree of flexibility that is
necessary to avoid highly specialized, and thus expensive, monolithic solutions
in favor of easy adoption, extension and maintenance. Recent steps into this
direction are the development of a number of libraries that are specifically
targeted at the grid handling tasks in AMR computations like the Fortran-
based PARAMESH [16], the freely available DAGH library, written in C++
[2], and the object-oriented designed SAMRAI framework [20]. All of these
support parallel execution in distributed memory architectures. Other codes
have been developed with more or less specific physical applications in mind,
for instance the FLASH code for astrophysical phenomena [3], which is built
on top of the PARAMESH library, and the Versatile Advection Code by Tóth
[23], which started as a collection of different numerical schemes for fluid and
magneto-fluid dynamics, formulated in a dimension-independent fashion, and
was recently extended to offer AMR capabilities [12]. This code uses OpenMP

2

parallelization and is thereby restricted to (virtually) shared memory systems.
The same applies to the incompressible fluid dynamics code used by Grauer
et al. for the study of the formation of singular structures [7], [8], in which
multi-threading is implemented explicitly through the POSIX standard inter-
face.

In the present paper, we describe Racoon , a framework that has recently been
developed to offer an environment for the grid-adaptive solution of conserva-
tive systems and related systems. The major motivations here were the possi-
bility to efficiently exploit both shared and distributed memory architectures,
and to keep the design as flexible as possible with respect to the numerical
schemes used, the physical problems addressed, and forthcoming extensions
for more sophisticated simulation techniques. Racoon is implemented in C++
and offers the necessary functionality for computations in 1 to 3 spatial di-
mensions with the possibility for extensions into higher dimensions.

In the next section, we start with a few general remarks on the overall de-
sign philosophy and a brief description of the numerical schemes that have
been implemented by now. The grid refinement algorithm and the resulting
data communication patterns during the computation are outlined in sec-
tion 3. Section 4 is devoted to the parallelization strategy, which is a hybrid of
multi-threading and interprocess communication through the Message-Passing
Interface (MPI), and to some benchmarking results of the scaling in parallel
environments. Finally, the conclusion summarizes the key findings and gives
a critical assessment of the mixed-mode parallelization.

2 Design Aspects

Obviously, an AMR framework, in particular when designed for distributed
parallel architectures, exhibits considerably more complexity than conven-
tional computations on fixed grids. Therefore, proper modular code design
seems even more advisable than in traditional computations, and the use of
corresponding techniques from software engineering that have emerged over
the last decades or so, is at least worth being considered. While the adop-
tion of object-oriented design concepts in high performance computing has
been somewhat reluctant over the years, there now seems to be a clear ten-
dency to provide at least C++ interfaces to the many standard libraries in
this field or even to provide the implementation directly in C++. Reasons for
this tendency might be that the run time penalty of C/C++ codes compared
to Fortran codes continues to diminish and, in some cases, has entirely disap-
peared, in particular when using restricted pointers for de-aliased data access.
In fact, some of the AMR frameworks mentioned in the introduction already
exploit the potential of object-oriented formulations [20], [2] for the operations

3

on grid data and for the data communication between individual grid blocks.

Racoon has been implemented entirely in C++, since this language offers var-
ious mechanisms which allow a fine-grained control over the code generation:
It supports full runtime polymorphic behavior, but offers also “non-virtual”
object-based programming with full compile time resolution which allows func-
tion inlining and similar optimizations. In addition, template programming is a
technique that combines high abstraction without necessarily sacrificing much
runtime performance. Widely used numerical libraries for e.g. linear algebra
or FFT are not applicable in the present context as the solution of hyper-
bolic systems on locally refined meshes with explicit time stepping is a local
problem not covered by those algorithms.

In contrast, the numerical schemes employed here, are highly tailored towards
conservation laws like compressible gas dynamics or Magneto-Hydrodynamics.
They operate on regular numerical meshes and basically involve the compu-
tation of numerical fluxes for physical quantities at cell boundaries and an
update of the cell integral according to the time integration scheme.

At present, Racoon implements the Kurganov-Tadmor [15] scheme, which is
a successor to the one originally proposed by Nessyahu and Tadmor [17],
and falls into the class of Lax-Friedrichs type schemes [5]. A major feature
here is that they are much simpler to implement than classical Godunov-type
schemes [6], [25], [24], as they avoid the spectral decomposition of the conser-
vation equations, and hence are applicable in situations where (approximate)
Riemann solvers [19] are unavailable or too expensive. The Kurganov-Tadmor
version in particular operates on a non-staggered mesh, making it well-suited
for AMR computations. Used in connection with a CWENO-reconstruction,
and an appropriate Runge-Kutta integrator, it offers third order accuracy in
smooth regions in both space and time. As a cheaper and less powerful alter-
native, standard second- and fourth-order finite difference discretizations are
also implemented.

The entire framework consists of the following major functional components:

• Data management on the grid blocks: Storage, allocation, inter-block com-
munication (e.g., data copy, interpolation), geometry information, block cre-
ation and disposal.

• Numerical treatment of a single grid block by means of a given scheme and
problem (time stepping, computation of numerical fluxes)

• Definition of the physical system: Variables, flux function (possibly source
terms), initial values, boundary values on the physical domain, diagnostics
etc.

• Mesh refinement, regridding, load balancing and -distribution.
• Parallelization: Interprocess communication (MPI), thread synchronization

4

etc.
• Overall control flow.

Data for physical quantities are kept in standard C-arrays on each individual
grid block, and all numerical operations are executed on these arrays with the
help of meta-information like array dimensions, number of overlapping ghost
points and the like. Comparisons with available libraries like Blitz++ has
shown that they offer no runtime gain compared to the solution chosen here.
Every block has a unique identity that specifies the blocks position and size in
the domain and keeps direct references (pointers) to its logical neighborhood,
i.e. neighbor blocks, the overlayed parent block and its child blocks, as far as
they exists. The blocks in turn are organized in a hierarchical manner within
a “Grid” object, which basically consists of lookup-tables for the blocks in
each refinement level and cached block connectivity information for faster
grid traversal.

Numerical schemes are predefined for 1- to 3-dimensional computations and
act on a configurable subset of the physical fields. The calculation of the fluxes
and sources, boundary values at the physical boundaries etc. occurs through
callback functions of appropriate C++ interfaces. For this purpose, a special-
ized “Problem” instance, that either directly offers the necessary information
about the model problem or delegates to other objects, registers itself at pro-
gram start-up and gets called by the main process control, schemes etc. for
the necessary action. Details of the mesh refinement algorithm and the paral-
lelization are given in the following sections.

3 Mesh refinement

3.1 Mesh Refinement Strategy

In their pioneering paper, Berger and Colella [1] describe a patch-based mesh
refinement method for hydrodynamic computations with shocks or highly lo-
calized structures: Starting the simulation with a single grid of a given initial
resolution, an a-posteriori error estimate is used to identify critical points on
the mesh with insufficient spatial resolution. Then, rectangular grid patches
of smaller grid spacing and correspondingly higher resolution are introduced
to cover those critical points and guarantee the desired accuracy. By applying
this method recursively, a hierarchy of grid patches is created so that areas
featuring small scale structures are resolved as needed, while the solution is
represented and computed on much coarser grids in smooth regions. We call
this approach patch-based because the shapes, sizes and positions of the sub-
grids don’t follow simple rules and depend on the temporal evolution of the

5

system under investigation: Constraints are only their rectangular shape and
some nesting conditions which basically state that every grid patch, supple-
mented with a border region, must lie entirely within an area already covered
by patches of the next coarser level. The attractiveness of this approach is the
efficient coverage of small scale structures: Once critical points are identified,
the grid patches are computed to give an optimal coverage of critical regions.

While this method has been successfully used and implemented in a number of
later codes [4], [22], [12], there are some drawbacks: The algorithm to compute
the shape and position of the patches under the nesting constraint is far from
trivial. Moreover, the fact that the subgrids created this way are irregular in
size, shape and position and may abut each other in unpredictable ways means
that the regridding procedure for a given refinement level l affects all patches
on this level as a whole, making it a non-local task. This, together with the
equally irregular data exchange between the subgrids, poses severe difficulties
for the parallel execution in distributed memory architectures.

An alternative to this patch-based approach is the regular bisection of grid
blocks along each spatial dimension, as used in more recent AMR implemen-
tations [16], [18]: Instead of collecting critical points into irregular patches,
every grid block that contains at least one critical point is refined as a whole
by shadowing or replacing it with a number of equally sized squares (2D) or
cubes (3D), which are created by bisecting their “parent” block along every
coordinate direction. Using this refinement ratio of 2, a d-dimensional imple-
mentation replaces a given block of level l by its 2d children of level l + 1. If
the number of cells per block and direction is the same on all grid blocks, the
grid resolution increases by a factor of 2 with increasing level l. An illustration
of this “regular” refinement in 2D is given in Figure 1, and more advanced
methods, for example with the option of anisotropic refinement along only one
direction or other refinement ratios than 2, can be found in the literature.

As a consequence of this rather simple approach, a logical tree-hierarchy of grid
blocks is created that, despite a less efficient coverage of critical points, has
a number of favorable advantages: Well-defined relationships between blocks
exist in terms of parent-child relations between refinement levels and neighbor
relations on the same level, which makes the implementation of data transfer
operations like data copy, interpolation and averaging, relatively easy. Com-
mon boundaries shared by neighbor blocks coincide entirely, and a parent’s
boundaries are contained in the union of its children’s boundaries. Due to
the tree hierarchy, ordering and traversal of the blocks is straight-forward and
block sizes and positions within the domain are well-defined.

This regular subgridding approach was adopted in Racoon because of its com-
pelling simplicity of the regridding procedure, the easy formulation of data
communication operations and, in particular, the advantages that the logical

6

block order offers for the parallel implementation, including the load balanc-
ing. In fact, we use a compound block identifier g = (l, i) to assign to every
grid block a globally unique identity consisting of the refinement level l and
a running index 0 ≤ i < 2l∗d. With g alone, a block’s spatial position and
size are determined, as are the corresponding ID’s of its neighbors, parent and
children if they exists. The mapping between the index i within a given level
l and the location of the grid block (l, i) in the domain, i.e. the numbering
of blocks, is induced by space-filling curves of the Hilbert type [10], a choice
which is made in order to obtain an efficient load distribution strategy for
distributed parallel processing as described in section 4.

An apparent penalty compared to the patch-based method is the fact that the
coverage of critical sections at first sight seems less efficient with grid block
bisecting because the border lines of possible refinement level boundaries are
defined a priory. However, this turns out to be less severe than expected if the
computations are started with a refinement level l > 0 right away, i.e. with
a domain decomposition: Then, only few further refinements are needed to
localize the high resolution regions around critical structures. In addition, a
certain margin of increased resolution around critical structures is necessary
to accommodate their possible motion relative to the grid between regridding
phases. Typical runs start with l = 3 or l = 4, corresponding to a domain
decomposition into 64 or 256 blocks in 2D and 512 or 4096 in 3D.

An important positive side effect of starting the simulation with a domain-
decomposed setup right from the beginning is the gain in execution speed:
Even in sequential mode, the decomposed domain with relatively small grid
blocks (typically 8d to 16d cells) leads to a much better CPU cache utiliza-
tion than one large grid block, and this cache efficiency easily comes with
a gain of factor 2 or more in execution speed on the tested platforms (i686,
Opteron, power4) despite the necessary boundary data copy. In parallel mode,
the coarsest grid level is easily parallelized.

A regridding procedure is initiated after a configurable number of time steps
by checking every point in every block for a given refinement criterion. The
criterion itself is defined together with the physical problem and is typically
based on the gradient of some variables as to identify small scale structures
in the domain. A more sophisticated and possibly less biased approach might
be a thorough error estimate, for instance using Richardson-extrapolation as
proposed by Berger and Colella [1]. Grid cells which are found to be critical
cause the containing blocks to be flagged for refinement. In addition, those
critical points which are close to the block’s boundary are used to flag the
abutting neighbor block(s) as well in order to communicate the information
about critical structures across block boundaries and ensure a buffer zone of
high resolution around critical points. Finally, additional refinement marks
are set in order to ensure a grid consistency criterion which states that abut-

7

ting blocks may differ by at most one refinement level. This criterion greatly
simplifies the interpolation operation at refinement boundaries and comes at
almost no cost.

After this marking step, the entire grid is updated: Flagged blocks, unless
already refined, are supplemented by their children, using the actual parent
block’s data for initialization, while unnecessary refinements are removed by
deleting the corresponding child blocks after their actual data was transfered
to the coarser parent block. The parent blocks, even if refined, are still kept in
the computation. Depending on the integration and time stepping mode that
was selected, they are either used to obtain a first approximation during every
integration step and provide intermediate boundary values for children and
neighbors, or they are simply deactivated and kept passively in the process.
Overall bookkeeping of the blocks is handled by “grid” objects, as already
mentioned, where the block ID’s (level-key pair) are used as keys and iterators
are provided for the traversal of the entire grid or blocks of a certain refinement
level.

3.2 Time stepping

Blocks are integrated quasi-autonomously, which requires bands of ghost cells
around the actual physical area that have to be updated after every integration
step: For neighboring blocks of the same refinement level, this is just a copy
of the overlap region like in a domain decomposition, and blocks which abut
the physical domain boundary are treated according to the corresponding
physical boundary condition. At refinement boundaries, finer blocks receive
interpolated ghost cell values from their respective coarser neighbors, while
coarser blocks receive averaged values from the fine region.

In order to fulfill the Courant-Friedrichs-Levy (CFL) condition for numerical
stability, finer grid blocks will in general need a smaller integration time step
than their coarser counterparts. In most applications, this stability restriction
is more relevant than the accuracy condition due to the explicit solvers used.

There are two basic ways for the time stepping on locally refined grids: 1.
One common step is used for all grid blocks, dictated by the most stringent
conditions found in the entire domain, or 2. different refinement levels use
individual time steps so that coarser blocks in general will be integrated with
fewer larger steps than fine blocks, which leads to a temporal refinement in
addition to the spatial one. The main reason for using the first method is
it’s simplicity and, for more advanced systems like incompressible flows, the
compatibility with additional correction steps (e.g. velocity projection after
solving a pressure equation). The advantage of the second approach is, apart

8

from moderate savings in computing time, the fact that also on coarse blocks,
the CFL number can stay close to 1 which is favorable for the phase error
confinement in some numerical schemes.

One of either methods can be selected in the Racoon time stepping module,
and the time step condition itself is always provided by the specific problem
instance which gets periodically queried by the time step classes which in turn
calculate the individual time steps for each refinement level and the resulting
integer factors between them.

When individual time steps ∆tl are chosen for each level l, one step on the
entire grid is formulated as a level-wise, recursive procedure (intra-level com-
munication with data copy is left out for clarity):

• step grid blocks on level l, individual ∆tl:
· save data at refinement boundaries to level l + 1 (old)
· integrate level l blocks once with time step ∆tl
· if not coarsest level: update boundary values at boundary to coarser blocks

as temporal interpolation
· pass spatial interpolation of old an new data at boundaries to level l + 1

to corresponding level-l + 1 blocks
· call step grid blocks of level l + 1 ∆tl/∆tl+1 times
· if last step on level l, pass latest coarsened volume data to level l−1-blocks

at refinement boundaries

This methods requires that shadowed coarse grid blocks at boundaries to finer
blocks are included in the integration in order to provide temporal interpo-
lations of boundary data for the abutting finer blocks. It is evident that the
algorithm results in a level-by-level integration with intermediate data transfer
between levels.

If one common time step is selected, the procedure is considerably simpler:

• step all grid blocks with common ∆t:
· step all blocks once with time step ∆t
· pass coarsened boundary data from fine to coarse levels at refinement

boundaries, starting with finest level
· pass interpolated boundary data from coarse to fine levels at refinement

boundaries, starting with coarsest level

Even here, the boundary data exchange has to occur separate for the fine-to-
coarse direction and vice-versa due to the implicit data dependency: For the
calculation of the (new) local interpolation to be passed to the fine ghost cells,
the coarse blocks must have new values in their own boundary (ghost) cells
already available.

9

While it would be possible in principle, to keep track of the data flow for
each individual block and to use the data dependency as a criterion to start
integrating a block, we have followed the approach of a level-by-level global
synchronization. This facilitates the entire flow control and seems by far the
most practical way to go as the dependency graphs between blocks get arbi-
trarily entangled after local refinement (note that data is exchanged not only
between face neighbors, but, depending on the numerical scheme, also diago-
nal neighbors; interpolation depends on previous intra-level exchange etc.). In
particular in the case of multi-threaded execution to be described in the next
section, this data tracking would require additional thread-synchronization for
consistent housekeeping, and we expect that the overall gain would be small
compared to the necessary effort. The global synchronization doesn’t require
a separate global communication action: It’s simply provided by synchroniz-
ing threads within each process after all external communication has been
finished.

4 Parallelization

High performance computing today requires efficient parallel execution. Adap-
tive mesh refinement suggests the fundamental parallelization strategy of han-
dling every single grid block as a quasi independent piece of work for each
integration step, and assign the blocks to CPUs for integration. The exis-
tence of ghost cells around the blocks, which effectively represent a buffer
zone, allows this approach to be implemented directly. However, it must be
kept in mind that AMR execution, and thereby its parallelization, is consider-
ably more complex than a pure domain decomposition: Blocks are recursively
advanced level by level as described in chapter 3, and information like interpo-
lated boundary values and flux corrections are exchanged between parents and
children at level changes. In shared memory architectures, the corresponding
communication paths are still workable without particular consideration: For
instance, Keppens and Tóth [13] report run time speed-up factors of up to 4.9
on a 16 CPU SGI Origin using manual parallelization with OpenMP. These
results are in agreement with the scaling that Grauer et al. [8] obtained using
multi-threading.

However, as the trend in high performance computing moves towards cluster
architectures, distributed parallelism must be addressed in order to exploit
these platforms. The approach of regular subgridding as presented in chapter
3 is mainly motivated to ease distributed parallelism: An obvious advantage
here is that the regular interfaces between neighboring (and nested) blocks
facilitate the programming, making a distributed implementation through the
Message Passing Interface (MPI) workable. Moreover, equal block sizes mean
roughly the same computational load per block, which greatly facilitates the

10

dynamical load balancing. A further aspect is the fact that we can globally
identify a grid block by means of its block ID, consisting of the refinement
level and a running index, across address spaces, which makes it easy to send
block-to-block messages between computing nodes. Finally, the indexing of
blocks of a given level by means of Hilbert curves, as already mentioned in
chapter 3, offers a distribution strategy that aims at minimizing the inter-node
communication.

With Racoon , an attempt has been made to combine multi-threading with
MPI distribution in order to adopt to cluster architectures consisting of SMP
nodes. In the following subsections, this approach will be described in detail
together with benchmark results of the parallel performance.

4.1 Hilbert Curve Ordering of Blocks and Load Distribution

As already mentioned, Hilbert type space filling curves are used to order and
distribute the individual grid blocks in a way which aims at minimizing the
communication between concurrent threads of program execution and between
processes. Hilbert space filling curves of level l in d-dimensional space provide
a mapping between the interval [0, 1] and the domain [0, 1]d with the property
that neighborhood or proximity tends to be conserved under this mapping.
This means that points being close to each other in the interval [0, 1] tend to
be mapped to points in space which are also have a small distance in Rd and
vice versa, a feature which is utilized in several areas of computer science. For
illustration, the 2D Hilbert curves of level 1 and level 2 are shown in Figure 2.
This tendency of neighborhood conservation is used to determine the distribu-
tion of blocks among separate computing nodes (processes/threads) in a way
that tends to assign neighboring blocks to the same node and thereby minimize
inter node communication. A similar approach is used in the PARAMESH li-
brary by MacNeice et al. [16] and theoretical investigations into the efficiency
of Hilbert curves in load distribution are given in e.g. [29] and [30].

To achieve this communication-efficient distribution, blocks of a given level l
are ordered according to their Hilbert index i, and this sequence is divided into
equally sized partitions (up to rounding error) for computing nodes. With this
mechanism, every block is assigned to a node, and physically close regions of
the domain tend to end up on the same node. It should be noted that it is also
possible to formulate a order not only per level but of all blocks, which addi-
tionally conserves the proximity between parents and children. This, however
turned out to be disadvantageous for our application: While computational
load balance can be achieved by weighting every block with a cost factor
according to its refinement level (and thereby to the number of integration
steps), the fact that only blocks of a certain level are integrated at a given

11

time causes idle periods on some nodes unless every node has the same number
of blocks for every level.

Figure 3 shows a close-up view of a local grid structure created during a
simulation run together with their ordering as induced by the space filling
curves. The effect of cluster formation of blocks belonging to the same refine-
ment level (i.e. having the same size) is obvious, and remote communication
between computing nodes is then restricted to the lines dividing these cluster.

In our implementation, load distribution is directly coupled to the grid refine-
ment: After a regridding procedure, which might create or remove blocks on
the various nodes, the new load per node is calculated for every level. If the
load imbalance exceeds a given threshold, blocks are migrated between the
nodes to arrive at the optimal load distribution. Note that the distributed re-
gridding already involves a collective communication, because the refinement
criterion applied to a block on one node might flag a neighboring block, pos-
sible residing on a different node, as described in section 3. Therefore, grid
refinement flags have to be exchanged between nodes before the actual refine-
ment takes place, which then is a local process. Afterwards, the re-distribution
is carried out, if necessary.

4.2 POSIX-Multi-thread Parallelization

On SMP machines, the use of multi-threading instead of distribution into dif-
ferent processes seems a natural way for parallelization. While OpenMP is an
established standard here, Racoon uses explicit thread programming through
the standard POSIX interface in order to preserve finer control over the work-
load distribution and the affinity between CPUs and memory. As mentioned
earlier, a general observation is that the efficient cache utilization is crucial for
high computing performance on modern CPU architectures . Therefore, the
load distribution and balancing by means of Hilbert curves has been carried
over to the multi-thread parallelization in that each POSIX thread (one per
CPU) operates on a fixed subset of all grid blocks according to the calcu-
lated distribution. Moreover, each thread has its own copy of the entire grid
(i.e. the block tables and connectivity information) with the peculiarity that
only those blocks that are local to the thread are populated with data. Un-
populated blocks act as proxies and contain pointers to the actual data in
the “spheres” of other threads if they’re in the same address space. All data
allocation takes place from within the thread that later operates on the block
data in order to ensure that a good CPU-to-memory affinity is achieved also
on architectures with non-uniform memory access (NUMA).

With this strict data separation between the threads, not only the numerical

12

operations on the block data, but also the iterations related to grid traversal
and retrieval of connectivity information from block objects operate on local
copies for each thread. Thus, the fundamental idea is to effectively create
thread-private data spaces and basically restrict all memory accesses that
might trigger cache-coherency controllers to enforce re-caching operations to
the inevitable exchange of boundary data between grid blocks. As mentioned,
this exchange is limited by means of the partitioning according to space-filling
curves. A typical time step on the grid (or on one grid level, depending on the
integration mode) consists of first advancing all blocks (in which the thread-
allocated data is accessed “privately” by the working thread), followed by
data copy which involves overlapping memory access and might cause cache
conflicts.

We have tested this approach on the JUMP multiprocessor at Forschungszen-
trum Jülich, which consists of IBM p690 machines, each with 32 Power4+
CPUs at 1.7 GHz clock rate running AIX, and on a local quad AMD Opteron
850 machine with 2.4 GHz CPU clock running Linux with a 2.6.10 kernel. Fig.
4 and 5 show the execution time of test runs with a typical setup. Here, the 3-
dimensional Euler equations from gas dynamics used to simulate gas blow-out
from dwarf galaxies as a result of supernovae explosions, are integrated for 200
time steps. The numerical scheme is the Kurganov-Tadmor scheme with 3rd
order CWENO reconstruction and 2nd order Runge-Kutta integration on grid
blocks with 83 cells and 2 layers of ghost cells, the number of grid blocks was
approximately 4800 on the p690 and 590 on the Opteron 850 quad setting.
The execution times given cover only the numerical integration itself, without
diagnostics, I/O, regridding or initialization of block data. On the IBM p690
power4+, the measured sustained floating point rate was around 600 MFlips
per CPU, which is close to 9% of the theoretical peak performance and can be
considered a reasonable value for this kind of application. The execution time
for the communication alone (boundary data exchange by copy, interpolation,
averaging) amounts to about 10% of the total execution time in all cases.

In all cases, the scaling behavior is good to excellent, which, however, was
obtained only after further manual optimization: In order to guarantee a tight
task affinity between the executing threads and the CPUs, and thereby take
full advantage of the affinity between threads and data as described above, we
had to explicitly bind the created threads to single CPUs in the machines. In
AIX, this was achieved with the “bindprocessor” system function, on Linux
with “sched setaffinity.” This manual tuning was essential for the displayed
scaling behavior: Without the enforced CPU affinity, the parallel performance
degraded by about 10 − −15% on both platforms, with considerable fluctu-
ations between runs. Binding the threads to CPUs, however, resulted in the
well reproducible scaling figures shown in Figures 4 and 5. The interpretation
here is that (unwanted) spontaneous task migrations of the computing threads
between CPUs during the run leads to random enhancements of the distances

13

to the memory where the corresponding data is allocated and to necessary
re-cache operations.

4.3 MPI Parallelization

The parallelization over address spaces, necessary for network-based clusters,
is similar in principle to the method described above: Here, every process
hosts a subset of all grid blocks, but the data exchange now involves message
passing with MPI rather than direct memory copies. An explicit serialization
of message data has been implemented instead of using the many specialized
transfer functions and derived data types of MPI. The reason is again that
many different kinds of messages are exchanged with different parts of a ghost
cell layer, and their flow is hardly predictable, in particular for the exchange
at refinement boundaries. It seems much more straight-forward to compose
messages that contain meta information about the message type, the target
block and the target region within the block (e.g. which ghost cells) together
with the core data itself.

Two different approaches have been followed concerning the message size,
number and send time:

1. Each data portion to be transferred (e.g. part of a ghost cell layer of one spe-
cific block to one specific neighbor block) is composed into a MPI message
and posted asynchronously with MPI Isend as soon as the sending block
is updated. The matching receive requests are posted on the receiving side
before the level update, and message completion and dispatch occurs after
the level update.

2. Small inter-block messages to the same target process are collected into
larger MPI messages of fixed sizes. These are transferred after a level up-
date is finished and dispatched on the basis of the embedded meta informa-
tion. The need for continuation messages is indicated by the sender through
meta tags in the compound message and triggers a second communication
encounter between sending and receiving process.

The first approach typically leads to many messages of small sizes (for the test
example computation described above, there are of the order of 103 messages
with an average size of ≈ 1.5 kB per time step), but the message exchange
is initiated as soon as the send data is ready, which in principle allows for
concurrency between computation and communication.

With the second method, messages are much larger (we chose 100 kB for the
compound message size), but they are exchanged only after a level update is
complete. Message collection is performed into sliced buffers of fixed slice size
which grow on demand and are reset after the communication is completed.

14

At that point, the buffers are not de-allocated but get reused in the next data
exchange in order to avoid frequent allocation-deallocation sequences. A com-
plication here is that the number of necessary slices within a communication
cycle is practically unpredictable a priori, as it depends on the order in which
the smaller inter-block data is serialized due to padding effects. One way to
go here would be to compute the needed total message size for every sender-
receiver pair in advance and negotiate the resulting MPI message size after
each regridding operation. This, however had to be done for every type of data
exchange separately (boundary copy, coarse-fine interpolation, fine-coarse up-
date, etc.) and also for each boundary transfer object, as different exchanges
for different physical fields might be used in more complex simulation set-
tings. For simplicity, we used a fixed MPI compound message size and took
into account that message padding leads to some communication overhead.

For a small number of processes, both approaches gave satisfactory results,
the speedup-curves for the second approach on the IBM machines is given in
Figure 4 for up to 32 processors. As can be seen, the scaling is still reasonable
up to 32 processors (with a speedup factor of about 26), but slightly inferior
to the pure multi-threaded method.

Similar to the multi-thread case, a smaller test problem was run on the
Opteron 850 quad with the LAM MPI implementation. This resulted in ba-
sically the same numbers as the multi-threaded case (Fig. 5). In all these
cases, the MPI traffic was intra-machine and has been communicated through
shared memory inter-process communication by the corresponding MPI trans-
port layer.

4.4 Hybrid Parallelization

The two parallelization methods described so far have been combined into a
hybrid mode in the obvious way: A number of processes are started, and within
each, a configurable number of threads is started up to work concurrently. As
before, each thread task within a process consists on a fixed subset of grid
blocks, with its own copy of the grid structure and connectivity information.
Thereby, all threads work autonomously in large portions of the computation,
but are synchronized before data exchange operations.

Depending on the choice of the MPI data exchange mode, the inter-process
communication differs slightly:

1. When each inter-block data message is mapped into one MPI message, all
executing threads post their corresponding messages immediately after a
block is updated. After a complete level update, one thread finishes the
MPI requests, and all threads dispatch the received messages concurrently.

15

This method requires a thread-safe MPI implementation and was tested
with LAM MPI and LAMPI on Linux and with the IBM implementation
on AIX.

2. When collecting inter-block messages into compound MPI messages, all
threads serialize concurrently into the send buffers to a specific peer pro-
cess. Here, the memory allocation and housekeeping within the compound
message is realized in a thread-safe way by standard mutex-locking. Data
serialization itself happens non-exclusively after allocation. After a level-
update, only one main thread performs the MPI send-receive operations
and queues the received compound messages, which are de-serialized and
dispatched concurrently by the other threads (or the main thread itself, if
there is only one thread per process).

As with the pure MPI mode, both methods were tried on the p690 machines
and the comparison resulted clearly in favor of the second way, i.e. the use
of compound messages for the MPI transfer. This might be surprising in the
first instance, as only one main thread is in charge of the entire MPI com-
munication (send/receive), but it must be kept in mind that 1. the latency
is fairly low (some µs) and 2. that the serialization/de-serialization work is
shared between the threads. Also, on the receiving side, de-serialization and
MPI communication can overlap from the second compound message on.

A further remark is due for the first method, i.e. concurrent MPI traffic from
all threads: First of all, the performance degraded seriously here, with an in-
crease in execution time of up to 20% in some cases. Modifying the method
in a way that not only one thread performed the MPI message completion,
but all threads did concurrent waits, each on those messages that target their
“thread-local” blocks, gave even worse results and had to be discarded entirely.
This behavior indicates that the matching of many small messages during the
wait stage from within different threads can cause severe penalties, at least
when done in the naive way it was implemented here (where the matching
of message destination and message type was realized through the MPI mes-
sage tag and no distinct MPI communicators were used). Also, even with
thread-safe MPI implementations, the internals of the communication layers
and possible thread synchronization and serialization is not visible to the user
and depends strongly on the implementation itself.

Speedup-curves for the hybrid mode obtained on the p690 are given in Figure 6
for the previously discussed test run with 32 and 64 CPUs, respectively. Here,
the total number of working threads equal the number of available CPUs,
but the grouping into processes ranges from the pure MPI parallelization (1
thread per process, 32 resp. 64 processes) to the maximum of 32 threads per
process (i.e. pure multi-thread mode in the case of 32 CPUs or 2 processes
with 32 threads spread over 2 machines in the case of 64 CPUs). The MPI
communication is based on compound messages of 100 kB size, and the task

16

affinity was again enforced through explicit CPU binding as described in the
multi-thread section.

It is obvious that there is some performance loss with increasing numbers of
processors, while the speed-up from 32 to 64 CPUs in the 32 threads case
corresponds to a factor of 1.9 (76s to 40s). Comparing the most favorable runs
with the pure MPI runs, we get a performance loss of 13% in the 32 CPU case
(76s to 86s), and a more pronounced penalty of 42% in the 64 CPU case (40s
to 57s). These results indicate that the hybrid mode in fact can lead to a gain
compared to the pure MPI parallelization once the multi-threaded execution
is optimized by enforcing the tight affinity between tasks, CPUs and memory.

5 Conclusions

We have described the development of a new framework for mesh-adaptive
computations of hyperbolic conservative systems. The project has been in-
spired by the attempt to create a modular basis for AMR computations which
can easily be extended and specialized, and which is suited for parallel com-
puting environments.

Through the use of object-oriented methods, the complexity associated with
AMR could be implemented successfully with limited efforts. During the it-
erative development cycle, we noticed that the principles of code re-use and
abstraction saved us considerable efforts when changing parts of the program
or correcting errors.

A regular subgridding method, now widely used [3], [18], [2], has been proven
to be a straight-forward but well working approach for the mesh refinement,
and the recent development of new numerical schemes for hyperbolic systems,
which offer an attractive combination of simplicity, robustness and accuracy,
provided a further major ingredient in the philosophy of a flexible framework.

As for parallelization, we have developed a hybrid concept of multi-threading
and inter-process communication through MPI. The benchmarks on IBM p690
machines with 32 CPUs show that the hybrid concept in fact results in perfor-
mance gain over a pure MPI parallelization, which, however requires a careful
optimization of the multi-threaded implementation.

A key issue here is the efficient use of the CPU cache, which in the first place
can be naturally obtained in AMR by the use of small grid block sizes that
fit well into the cache. In addition, each thread in the current implementation
creates its own effective data subspace consisting of a fixed subset of grid
blocks and the block connectivity information, all allocated in the thread

17

itself in order to achieve small CPU-memory distances in NUMA architectures.
Block assignment to threads is based on the same space filling curve algorithm
that determines the distribution among processes, and which thereby tends to
minimize not only inter-process communication but also inter-thread memory
accesses with potential cache conflicts. To finally achieve the desired gain
from multi-threading, the affinity between tasks and CPUs must be enforced
manually by binding the working threads to individual CPUs.

For the MPI part of the communication, it turned out that the creation of
fewer messages of moderate size (1MB and below) by collecting the small
inter-block messages which are addressed to the same target processor is fa-
vorable compared to mapping the typically small messages (≈ one to few kB)
between blocks directly to MPI messages, despite the fact that all MPI traf-
fic is channeled through one thread in the message collection method, Here,
the (de-) serialization of compound MPI messages can occur concurrently by
many threads. These results indicate that the concurrent access to the MPI
layer for the completion of many small-sized messages, even with multi-thread
abilities, should be used carefully with respect to the overall performance.

In the end, the hybrid concept proved to work satisfactory and resulted in
floating point performances in the range of 7–10% of the theoretical peak
performance on 64 processors for the described application. Naturally, there
is still some room for further improvement, for example in connection with
automatic estimates for the size of MPI compound messages. For practical
use, further development of high-level interfaces for the control of task and
memory affinity on high performance computers would be helpful, as the
method of explicit CPU binding that was chosen here has the potential to
conflict with the job dispatcher and load distribution algorithms in larger set-
tings. One interesting initiative for IBM’s platform is the VSRAC interface
project (www.redbooks.ibm.com/redpapers/pdfs/redp3932.pdf), that might
be extended in the near future to allow a thread-level control in addition
to its current process-level control.

With respect to the performance and scaling figures given here, it should be
mentioned once more that the ratio of computation to communication costs
with the tailored numerical schemes discussed here is very favorable in that
the communication accounts for no more than 10% of the execution time.
Other schemes with more global data dependencies and more volume data
communication, like for example elliptical solvers, might be more sensible to
the communication overhead and therefore may require an increased effort to
optimize the parallelization. These further investigations are planned for an
adaptive multigrid solver which is currently under development.

18

Acknowledgements

We would like to thank the members of the Zentralinstitut für Angewandte
Mathematik at Forschungszentrum Jülich for their assistance and advice on
issues of the parallel implementation. Access to the JUMP multiprocessor
computer at Forschungszentrum Jülich was made available through project
HBO18. This work benefitted from support through INTAS contract 00-292
and Sonderforschungsbereich 591 of Deutsche Forschungsgemeinschaft. We
thank an anonymous referee for helpful comments and suggestions on the
original manuscript.

References

[1] M. J. Berger and P. Collela, Local Adaptive Mesh Refinement for Shock
Hydrodynamics, J. Comp. Phys, 82 , 64 (1989).

[2] M. Parashar, J.C. Brown, see http://www.caip.rutgers.edu/ parashar/DAGH.

[3] FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical
Thermonuclear Flashes, B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M.
Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, H. Tufo,
Astrophys. J., 131 , 273, (2000).

[4] H. Friedel, R. Grauer, C. Marliani, Adaptive mesh refinement for singular
current sheets in incompressible magnetohydrodynamic flows, J. Comp. Phys.,
134 , 190 (1997).

[5] P. D. Lax, Weak Solutions of Nonlinear Hyperbolic Equations and their
Numerical Computation, Comm. Pure Appl. Math., 7 , 159, (1954).

[6] S. K. Godunov, A finite difference method for the numerical computation of
discontinous solutions of the equations of fluid dynamics, Mat. Sb., 47 , 271,
(1959).

[7] R. Grauer, C. Marliani, Current Sheet Formation in 3D Ideal Incompressible
Magnetohydrodynamics, Physica D, 151 , 175, (2001).

[8] R. Grauer, C. Marliani, K. Germaschewski, Adaptive mesh refinement for
singular solutions of the incompressible Euler equations, Phys. Rev. Lett., 84,
4850, (1998).

[9] C. P. Groth, D. L. De Zeeuw, T. I. Gombosi, K. G. Powell Global 3D
MHD simulation of a space weather event: CME formation, interplanetary
propagation, and interaction with the magnetosphere, J. Geophys. Res., 105 ,
25053, (2000).

[10] D. Hilbert, Über die stetige Abbildung einer Linie auf ein Flächenstück Math.
Ann., 38 , 459, (1891).

19

[11] G.-S. Jiang and E. Tadmor, Nonoscillatory Central Schemes for Multi-
dimensional Hyperbolic Conservation Laws, J. Sci. Comp., 19 , 1892 (1989).

[12] R. Keppens, M. Nool, G. Toth, J.P. Goedbloed, Adaptive Mesh Refinement
for conservative systems: multi-dimensional efficiency evaluation Comp. Phys.
Comm., 153 , 317 (2003).

[13] R. Keppens, G. Tóth, OpenMP parallelism for multi-dimensional grid-adaptive
magnetohydrodynamic simulations, in: Proc. of 2nd International Conference
on Computational Science (2002).

[14] A. Kurganov and D. Levy, A Third-Order Semidiscrete Central Scheme for
Conservation Laws and Convection-Diffusion Equations, J. Sci. Comp., 22 ,
1461 (2000).

[15] A. Kurganov, E. Tadmor, New High-Resolution Central Schemes for Nonlinear
Conservation Laws and Convection-Diffusion Equations, J. Comp. Phys., 160,
241, (2000).

[16] P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein, C. Packer,
PARAMESH : A parallel adaptive mesh refinement community toolkit, Comp.
Phys Comm., 126 , 330 (2000).

[17] H. Nessyahu, E. Tadmor., Non-oscillatory central differencing methods for
hyperbolic conservation laws, J. Comp. Phys., 87 , 408, (1990).

[18] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D. L. De Zeeuw, A Solution-
Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, J. Computational
Phys., 154 , 284, (1999).

[19] Approximate Riemann solvers, parameter vectors, and difference schemes, P. L.
Roe, J. Comp. Phys., 43 , 357, (1981).

[20] SAMRAI: Development project at LLNL, see
http://www.llnl.gov/CASC/SAMRAI.

[21] A Survey of Several Finite Difference Methods for Systems of Nonlinear
Hyperbolic Conservation Laws, G. A. Sod, J. Comp. Phys., 27 , 1, (1978).

[22] O. Steiner, M. Knölker, M. Schüssler, Dynamic Interaction of Convection with
Magnetic Flux Sheets: First Results, in: Solar Surface Magetism, NATO ASI
Series C, 433, ed. R. J. Rutten and C. J. Schriver, Kluwer, 1994.

[23] G. Tóth, General Code for Modeling MHD flows on Parallel Computers:
Versatile Advection Code, Astrophys. Lett. Comm., 34 , 245 (1996).

[24] E. F. Toro, A Weighted Average Flux Method for Hyperbolic Conservation
Laws, Proc. R. Soc. London A, 423 , 401, (1989).

[25] P. Woodward, P. Colella, The Piecewise Parabolic Method (PPM) for Gas-
Dynamical Simulations, J. Comp. Phys., 54 , 115, (1984).

[26] U. Ziegler, The Effect of Rotation on the Buoyant Rise of Magnetic Flux Tubes
in Accretion Disks, Astr. Astrophys., 367 , 170 (2001).

20

[27] S. Champeaux, T. Passot, P.-L. Sulem, Alfvén wave filamentation, J. Plasma
Phys., 58 , 665 (1997).

[28] D. Laveder, T. Passot, P.L. Sulem, Transverse dynamics of dispersive Alfvén
waves: I. Direct numerical evidence of filamentation, Phys. of Plasmas, 9 (1),
293 (2002).

[29] G. W. Zumbusch, On the quality of space-filling curve induced partitions, Z.
Angew. Math. Mech., 81 25, 2001

[30] G. W. Zumbusch, Parallel Multilevel Methods. Adaptive Mesh Refinement and
Loadbalancing, Teubner, 2003.

21

Fig. 1. Illustration of regular grid refinement: The domain is covered by a hierarchy
of grid blocks, each of them hosting a fixed number of cells. Upon refinement, a
block is shadowed by 4 (in 2D) or 8 (in 3D) equally sized children. Shown here are
refinement levels between 1 (upper left) and 4.

22

Fig. 2. Two-dimensional Hilbert curves of level 2 (left) and 3 (right), respectively.
Each of the squares corresponds to a potential grid block. Blocks of a given level are
ordered according to their position on the visiting Hilbert curve in order to achieve
clustering on computing nodes.

23

Fig. 3. Close-up view of a number of blocks up to refinement level 6, taken from an
actual simulation run. The gray scale indicates the computer node on which a block
is located. Each block consists of 16x16 cells in this case. Distribution is based on
the Hilbert curve ordering on a per-level basis, which leads to the obvious clustering
of neighbouring blocks on each level.

24

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

W
C

 s
pe

ed
up

CPUs

p690 MT
p690 MPI

Fig. 4. Wall-clock speed-up of the test application on IBM p690 with multithread
parallelization (MT) and single-thread MPI distributed parallelization (MPI), com-
pared to the serial run (at # CPU=1). The serial execution time is 2253 seconds,
floating point rate is ≈ 600 MFlips. Times exclude data initialization, I/O, regrid-
ding.

25

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

W
C

 S
pe

ed
-u

p

CPU

AMD 850 MT

Fig. 5. Wall-clock speed-up of the test application on AMD opteron 850 quad with
multithread parallelization (MT) compared to the serial run (# CPUs = 1). Here,
the serial execution time (w/o initialization, I/O, regridding) is 176 seconds. The
single thread MPI measurements gave essentially the same results.

26

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

W
C

 ti
m

e

threads per process

p690 hybrid, 32 CPUs
p690 hybrid, 64 CPUs

Fig. 6. Wall-clock time for test application execution in hybrid-parallelization on
IBM p690 with 32 and 64 CPUs, respectively. Displayed is the execution time with
1 to 32 threads per process. The total number of threads is 32 and 64, respectively,
grouped in a variable number of processes.

27

