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The numerical simulation of the 3D incompressible Euler equation is analyzed with respect to
different integration methods. The numerical schemes we considered include spectral methods with
different strategies for dealiasing and two variants of finite difference methods. Based on this com-
parison, a Kida-Pelz like initial condition is integrated using adaptive mesh refinement and estimates
on the necessary numerical resolution are given. This estimate is based on analyzing the scaling
behavior similar to the procedure in critical phenomena and present simulations are put into per-
spective.
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I. INTRODUCTION

The question, whether the incompressible Euler equa-
tions develop singularities in finite time starting from
smooth initial conditions, remains an outstanding open
problem in applied mathematics. Although substantial
progress has been made in recent years using a more geo-
metrical viewpoint [1–5], it is yet not clear from numeri-
cal simulations, whether the assumptions of the theorems
for non-blow up are fulfilled for flows evolving from sim-
ple smooth initial conditions. Singular structures, evolv-
ing in finite time or simply “fast enough”, may play a
similar role as shock-like structures in compressible flows,
providing structures which dominate the energy dissipa-
tion even in the non-viscous situation (see Eyink [6–8]
and references therein).

In this paper, we study a Kida-Pelz like flow with dif-
ferent numerical schemes: spectral methods with differ-
ent strategies of dealiasing (this extends the study of Hou
and Li [9] and confirms their results), two finite differ-
ence methods and a finite volume method. Studying
the structures of vorticity, it turns out that the differ-
ences between the various methods of dealiasing are more
pronounced than between the spectral methods and the
finite difference/volume methods. This result suggests
that resolving the vorticity structures is more important
than the order of the numerical scheme. It also justifies
the use of finite difference/volume methods in adaptive
mesh refinement (AMR) simulations to resolve the vor-
ticity structures.

Using AMR simulations up to an effective resolution
of 40963 mesh points and comparing the results to lower
resolution runs, we observe that the standard way of pre-
senting a 1/|ω| plot in time may lead to misleading con-
clusions. However, looking at normalized plots reveals
the issue of numerical resolution in a convincing manner.
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II. NUMERICAL SCHEMES

In this section we compare spectral methods with dif-
ferent dealiasing and finite difference/volume methods.

A. Spectral methods and dealiasing

We use a standard spectral method where the time
stepping is performed with a strongly stable 3rd-order
Runge-Kutta method [10] in Fourier space and where
nonlinearities are calculated in real-space. On Linux-
clusters, the FFTW-library is used whereas the library
P3DFFT [11] from the San Diego Supercomputer Center
is used on the IBM Regatta series and on BlueGene/L.

We use three ways of dealiasing the spectral data:

1. Spherical mode truncation: this is used in turbu-
lence simulations (Biskamp and Müller [12]). The
spherical mode truncation puts a sphere of radius
N
2 in Fourier space and nullifies all modes outside
this sphere.

2. Standard 2/3 rule: same as above, but using a ra-
dius of 2

3
N
2 = N

3 [13]. This is the most common
way of dealiasing spectral data.

3. High-order exponential cut-off: this method was
introduced by Hou and Li [9] and consists of in-
troducing a high-order exponential filter function
ρ(k) = exp(−α(|k|/N)m) with α = 36 and m = 36.

B. Finite difference/volumes methods

All presented finite difference/volume methods are sec-
ond order and use the same strongly stable 3rd-order
Runge-Kutta method [10] as used in the spectral simula-
tions.

We implemented three different versions of real-space
methods:
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1. Staggered grid formulation of Harlow and Welsh
[14]: Normal components of the velocity are lo-
cated at their respective cell faces and the pressure
is defined at the cell centers. This allows a exact
Hodge-decomposition such that no pressure oscil-
lations occur. In addition, it conserves momentum
and energy and could thus also been seen as a finite
volume method.

2. Vorticity formulation for AMR: From our previous
AMR studies [15, 16] we know that the coarse-fine
grid interpolations are very sensitive in the 3D Eu-
ler simulations. As in the former simulations we
choose to perform all data exchange and interpo-
lation using the vorticity ω = ∇ × u. Here, the
vorticity is defined at cell centers and we applied a
tri-cubic interpolation for coarse-fine grid interpo-
lation. Then, three Poisson equations are solved for
the cell-centered vector Potential A and staggered
values for the velocity u = ∇×A are obtained.

3. Finite volume method: this method is similar to
the former but a finite volume method [15, 17, 18]
is used instead of finite differences.

C. Comparison

We first compare the growth of the maximum vorticity
according to the Beale-Kato-Majda result [19, 20] for all
six numerical methods described above. The initial con-
dition was chosen similar to Kida-Pelz 12 vortices [21–
23] with a Gaussian shape for the vorticity distribution.
Resolution of all the spectral simulations were 5123 mesh
points (corresponding to the full domain) and in addition
the Hou-Li exponential filtering was repeated with 10243

mesh points. The finite difference/volume simulations
were performed with 5123 and 10243 mesh points. The
growth of max |ω| is shown in Fig. 1. All simulation
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FIG. 1: Growth of max |ω| for all implemented numerical
schemes.

FIG. 2: Isosurface plots of vorticity. From top to bottom:
spherical truncation, 2/3 rule, exponential filtering, Harlow-
Welsh, vorticity formulation, 5123 mesh points
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FIG. 3: Energy spectra at time t = 0.5 for spectral and finite
difference methods: a) spherical model truncation (5123), b)
high-order exponential cut-off (5123), c) 2/3 rule (5123), d)
high-order exponential cut-off (10243), e) vorticity formula-
tion (10243), f) staggered grid formulation (10243)

agree very well up to the time when the flow is underre-
solved. This is about t = 0.4 for the simulations using
5123 mesh points and t = 0.47 for the 10243 runs. There
is no particular criterion which simulation performs bet-
ter once the simulation is underresolved. The very simple
message from this comparison is: you just have to resolve
the flow and this is more important than the order of the
scheme.

In order to display the differences and similarities of
the various numerical methods, we used a “low resolu-
tion” simulation with 5123 mesh points at a late time
t = 0.5 where the flow is already underresolved. There-
fore, we looked at very low levels (5% of the maximum
vorticity) as suggested and done by Kerr [24] and Hou
and Li [25]. Due to the high symmetry of the flow, only
1/8 of the total configuration is shown. (To get a better
impression for the geometry of the vortices, see Fig. 4,
which shows an isosurface of 70% of the peak vorticity.)

The spherical truncation produces highly visible arti-
facts due to heavy oscillations which grow to substantial
values. This is mostly suppressed in the simulation us-
ing the classical 2/3 rule and nearly vanishes for the high
order exponential smoothing. Thus our comparison con-
firms the analysis of Hou and Li [25]. Remarkable is the
strong similarity of the real-space methods to the spectral
simulation with high order exponential smoothing. This
is especially visible in Fig. 3, which shows the energy
spectrum for spectral and finite difference/volume meth-
ods at time t = 0.5. In the spectral schemes, the spher-
ical truncation and the 2/3 rule show a strong Gibbs
phenomena which is absent in the exponential filtering
and the finite difference/volume schemes. The Harlow-
Welsh method is slightly more dissipative than the vor-
ticity formulation. From the comparison with the spec-
tral schemes using exponential filtering and 10243 mesh
points it is safe to say that the finite difference schemes

with an approximately 1.3 times larger resolution in each
spatial direction perform equally well as the spectral code
with exponential filtering. Thus, our conclusions of this
comparison is that the differences in the simulation re-
sults caused by the choice of the dealiasing method are
larger than the difference to and between the real-space
methods. Our finding thus confirms the viewpoint of Or-
landi and Carnevale [26] and justifies the use of finite
difference/volume methods as integration scheme in an
adaptive mesh refinement treatment.

FIG. 4: Isosurface plot of max |ω| at 70% of maximum vortic-
ity. Shown is also the trajectory of a particle moving to the
position of maximum vorticity.
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FIG. 5: Growth of vorticity along the Lagrangian trajectory
(red) which ends near the point of maximum vorticity and a
fitted exponential (green).
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D. Lagrangian trajectories

As pointed out in [3, 4], the Lagrangian treatment of
vorticity amplification is closely related to the local geo-
metric properties – like curvature and torsion – of vortex
lines. In Fig. 4 the trajectory of a Lagrangian tracer par-
ticle is shown. To obtain this trajectory, we first iden-
tified the spatial position of the maximum vorticity at
a late time of the simulation and then traced back the
actual trajectory. Fig. 5 shows the temporal evolution
of vorticity following this trajectory. A tendency to an
exponential growth of vorticity along the trajectory is
obvious.

III. ADAPTIVE MESH REFINEMENT
SIMULATIONS

A. The framework racoon

For the adaptive mesh refine calculations, we use our
framework racoon [27] which is designed for massive par-
allel computations and scales for hyperbolic systems lin-
early up to 16384 processors on BlueGene BG/L. How-
ever, for the incompressible Euler equations, the pres-
sure resp. vector potential are solved using an adaptive
multigrid method [28, 29] which presently scales only up
to 64 processors. Therefore, the present simulations are
limited to an effective resolution of 40963 mesh points.
Parallelization and load-balancing is performed using a
space-filling Hilbert curve [27].

Using the framework racoon and the vorticity formula-
tion, we solve the incompressible Euler equations with an
effective resolution of 40963 mesh points. Fig. 6 shows a
volume rendering of vorticity at the latest time t = 0.5
including the adaptive meshes. Memory consumption is
quite moderate using less than 80 GBytes.

FIG. 6: Volume rendering of vorticity at time t = 0.5.
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FIG. 7: Temporal evolution of 1/ max |ω|.

B. Analyzing the growth of vorticity

Looking at Fig. 7 which shows the time evolution of
1/ max |ω| it is tempting to identify a finite time sin-
gularity. However, a more appropriate presentation is
obtained plotting max |ω| × (t0 − t) where t0 is the ex-
pected singularity time. This quantity should converge
to a horizontal line in this plot if a singularity occurs
in finite time. The time t0 = 0.638 is chosen in a way
that this scaling is observed in the late phase of the sim-
ulation while the numerics is still resolved. This is
shown in Figs. 8 and the zoom in the inlet of this figure.
Especially the zoom of the late phase of the simulation
demonstrates, how sensitive the growth of vorticity de-
pends on the numerical resolution and that conclusions
drawn from underresolved simulations must be handled
with care.
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FIG. 8: Scaling of the growth of vorticity. Red: 10243 mesh
points, Blue: 20483 mesh points, Green: 40963 mesh points.
The inlet shows the late phase of the simulation and highlights
the importance of numerical resolution.
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IV. CONCLUSIONS AND OUTLOOK

We demonstrated the extreme sensitivity of the growth
of vorticity on the numerical resolution. In order to gain
further insight into the mechanism of vorticity amplifi-
cation, future simulations should include the following
analysis and diagnostics: i) If a finite time singularity is
expected, then the blow-up time of vorticity must occur
at the same time when the spatial position of maximum
vorticity and maximum strain come together. ii) The
Lagrangian viewpoint should be analyzed according to
Deng, Hou and Xu [4] and Gibbon [3]. iii) Simulations
should use initial conditions including the Kida-Pelz flow
[21] and Bob Kerr’s orthogonal tubes [30]. However, the
shape of the initial vortex tube should be chosen in such

a way that vortex shedding will not pollute the vorticity
growth. For orthogonal vortex tubes this was achieved by
Orlandi and Carnevale [26] starting with Lamb dipoles.
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