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Abstract

The influence of the Hall-term on the width of the magnetic islands of the tearing-
mode is examined. We applied the center manifold (CMF) theory to a Magneto-
hydrodynamic (MHD)-system. The MHD-system was chosen to be incompressible
and includes in addition to viscosity the Hall-term in Ohm’s law. For certain val-
ues of physical parameters the corresponding center manifold is two-dimensional
and therefore the original partial differential equations could be reduced to a two-
dimensional system of ordinary ones. This amplitude equations exhibit a pitchfork-
bifurcation which corresponds to the occurrence of the tearing-mode. Eigenvalue-
problems and linear equations due to the center manifold reduction were solved
numerically with the Arpack++-library. An important result of this analysis is the
growth of the tearing mode island width by increasing the Hall-parameter, a feature
which has been observed in recent numerical simulations of collisionless reconnec-
tion.
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1 Introduction

The term magnetic reconnection corresponds to the process of topological
reordering of magnetic field lines. This process transfers energy stored in the
magnetic field to the surrounding plasma. Magnetic reconnection is one of
the most relevant processes in astrophysical, space and laboratory plasmas.
Reconnection plays a major role in understanding phenomena like solar flares,
small scale dynamos and sawtooth disruptions in tokamaks.

In the last 10 years much progress has been made to understand why colli-
sional reconnection is so fast. A major impact milestone was the comparison
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of kinetic, hybrid and fluid simulations of two-dimensional reconnection in the
GEM framework [1]. One results of this project was that the Hall-term in
Ohm’s law is responsible for speeding up the process due to the existence of
whistler waves, which are also responsible to form a X-point structure in the
reconnection region (see also [2]). The Hall-term alone is not able to change
the topology of the magnetic field lines, so non-ideal terms in Ohm’s law are
needed like electron inertia, electron pressure or resistivity.

The goal of this paper is to investigate the influence of the Hall-term on the
island width of a tearing mode. In order to study this effect on the structure
of magnetic reconnection analytically, we considered an equilibrium of a set
of MHD-equations and reduced it within the center manifold theory to a low-
dimensional system of ordinary differential equations. This was done by [3]
for an only resistive MHD-System. The resulting system exhibits a pitchfork
bifurcation which we studied against the Hall-parameter.
In contrast to [3] we used the Arpack++-library to solve eigenvalue prob-
lems and linear systems which occurred within the center manifold reduction.
This library is designed to solve large, sparse eigenvalue problems for only
a few eigenvalues. By means of Arpack++ we determined the spectrum of
the linearized Hall-MHD-System and checked an important condition for the
applicability of the center manifold theory to the underlying MHD-System.

2 The center manifold reduction

The center manifold theory deals with the reduction of a dynamical system in
the neighbourhood of a non-hyperbolic fixed point.
Consider a system of ordinary differential equations,

ẋ = f (x ), x ∈ Rn, f : Rn → Rn, (1)

Let x 0 = 0 be a non-hyperbolic fixed point of f and A the linearisation of
f . If the spectrum of A only consists of stable (real part < 0) and marginal
(real part = 0) eigenvalues, the center manifold theory states that there ex-
ists a Cr invariant stable manifold W s and a Cr−1 invariant center manifold
W c at x 0 which are tangent to the corresponding eigenspaces. Furthermore
the center manifold is attractive, that means that trajectories starting in the
neighbourhood of x 0 will converge to a trajectory lying in W c. This situation
is illustrated in Fig. 1. For an overview on center manifold theory see Carr [4],
Guckenheimer and Holmes [5], Chow and Hale [6], [7]
If one is only interested in the longtime asymptotic behaviour of a solution

it is sufficient to study the dynamics restricted to the center manifold.
In order to apply the center manifold reduction to a bifurcation problem of
the Hall-MHD equations one has to incorporate parameters and infinite di-
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Fig. 1. The invariant manifolds W s and W c at a non-hyperbolic fixed point

mensionality. The first point is achieved by extending the configuration space
and the differential equations (1) by a parameter space Rl,

ṗ = 0 ,

ẋ = f (x ,p).

Obviously the dimension of the center manifold is enlarged by l.
The center manifold theory also applies to infinite-dimensional problems, if
certain restrictions are fulfilled, see [8]. For example the spectrum must be
decomposed into a part containing a finite number of eigenvalues with real
parts equal to zero and a part containing eigenvalues with negative real parts
which are bounded away from zero.
For constructing the solution on the center manifold consider a dynamical
system given by a PDE

u̇ = f (u ,p) f : differential operator

p ∈ Rl : parameter space
(2)

with the following assumptions. Let u0 be a fixed point of (2) and the spectrum
of the linearisation A of f consist of n marginal modes u1, · · · ,un, i.e. Au i =
ωiu i with Re(ωi) = 0, and eigenvalues with negative real part which are
bounded away from zero.
Then an appropriate ansatz for the solution on the center manifold is given
by Friedrich [9] and Grauer [3]

u(t) =
n∑

i=1

aiu
i +

∑
1≤j≤k≤n+l

ajaku
jk +

∑
1≤j≤k≤m≤n+l

ajakamu jkm · · · (3)
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with

ȧ1 = g1(a1, · · · , an+l)
...

ȧn = gn(a1, · · · , an+l)

ȧn+1 = 0

ȧn+l = 0

an+i = pi Parameter

(4)

gi =
n∑

j=1

Aj
iaj +

∑
1≤j≤k≤n+l

Ajk
i ajak +

∑
1≤j≤k≤l≤n+l

Ajkl
i ajakal + · · · (5)

The solution (3) is arranged according to the order of the amplitudes ai. To
every order O(|a|) corresponds a direction of u ij,u ijk, .... The amplitudes ai

contain the temporal evolution. However, the expansion (3) only holds for a
neighbourhood of u0.

3 The basic equations

In order to investigate the influence of the Hall-term of the Ohm’s law on the
islands width of the tearing-mode we use a simple MHD-System. It contains in
addition to the resistivity the kinematic viscosity which stabilizes the spectrum
of eigenvalues of the system. Therefore it is possible to let the spectrum only
contain stable and marginal eigenvalues. Furthermore it is incompressible.
The basic equations are

∂tv = − (v · ∇) v +
1

cρ0

j ×B + ν∆v − 1

ρ0

∇p, (6)

∂tB = −c∇×E , (7)

4π

c
j = ∇×B , (8)

E =
mi

ceρ0

j ×B − 1

c
v ×B + ηj , (9)

∇ ·B = ∇ · v = 0. (10)

Using the following notations

B → B̄B , L → L̄L, v → vAv , vA =
B̄√
4πρ0

,

t → L̄

vA

t, ν → ρ0vAL̄ν, η → 4πvAL̄

c2
η,

α =
di

L̄
, ωpi =

√
4πn0e2

mi

, di =
c

ωpi

, ρ0 = min0,
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taking the rotation of (6), inserting (8) for j and (9) for E yields

∂t (∇× v) = ∇× (− (v · ∇) v + (∇×B)×B + ν∆v) (11)

∂tB = −∇× (α (∇×B)×B − v ×B + η∇×B) (12)

∇ ·B = ∇ · v = 0 (13)

We only consider solutions which are independent of z. Therefore and due to
(13) it is convenient to represent v and B by flux functions Φ and Ψ,

v = −∇× (Φ (x, y) ez) + vz(x, y)ez = −∂yΦex + ∂xΦey + vzez,

B = −∇× (Ψ (x, y) ez) + Bz(x, y)ez = −∂yΨex + ∂xΨey + Bzez.
(14)

An equilibrium of (11) and (12) in terms of the flux functions is given by

Φ0 = Bz0 = vz0 = 0, ∂yΨ0 = Ψ′
0 = F (y), η0 =

E

Ψ′′
0

=
1

Ψ′′
0

, (15)

where the prime denotes differentiation with respect to y. Following [3] we set
E = 1 and choose a Harris-like profile

Ψ′
0(y, λ) = tanh(λy) ⇒ Ψ0(y, λ) =

1

λ
ln

(
cosh(λy)

)
. (16)

We study the problem in a rectangular area [0, 2π]× [−yR, yR] with yR = 0.5
and periodic boundary conditions in the x-direction. The geometry and the
equilibrium magnetic field are shown in Fig. 2.
After inserting (14) into (11) and (12), the equations for the perturbations of

Fig. 2. The geometry of the problem
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the equilibrium are,

∂tΨ =η0∆Ψ−Ψ′
0∂xΦ− αΨ′

0∂xBz

+ [Ψ, Φ] + α [Ψ, Bz] ,

∂tBz =−Ψ′
0∂xvz + η0∆Bz + η′0∂yBz + α (Ψ′

0∂x∆Ψ−Ψ′′′
0 ∂xΨ)

+ [Bz, Φ] + [Ψ, vz] + α [∆Ψ, Ψ] ,

∂t∆Φ =Ψ′′′
0 ∂xΨ−Ψ′

0∂x∆Ψ + ν∆2Φ

+ [∆Φ, Φ] + [Ψ, ∆Ψ] ,

∂tvz =−Ψ′
0∂xBz + ν∆vz

+ [vz, Φ] + [Ψ, Bz] ,

(17)

where we used the standard Bracket

[A, B] = ez · ∇A×∇B = (∂xA)(∂yB)− (∂yA)(∂xB).

As in [3] it turns out the boundary condition are not strongly effecting the
solutions and for simplicity we impose the following boundary conditions:

Ψ = Φ = Bz = vz = 0 for y = yR and

∆Φ = ∆Ψ = 0 for y = yR and

all variables 2π − periodic in x

(18)

4 Center manifolds of the Hall-MHD system

In this section the center manifold theory will be applied to the Hall-MHD
system introduced in the previous section. We will study the case that only
one eigenvalue becomes marginal. The corresponding eigenspace will be two
dimensional due to the translation symmetry in the x-direction.

4.1 The CMF-Ansatz

The equations (17) contain the following parameters:

• λ : shear of the equilibrium magnetic field
• ν : viscosity
• α : Hall–parameter
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The parameter λ and ν constitute the parameter space. We treat α as an
external parameter and use the ansatz (3) with

u = µ = (Ψ, Bz, Φ, vz), (19)

a3 = λ− λc , a4 = ν − νc. (20)

4.2 The marginal modes

The linearized problem of (17) is given by

∂t(Ψ, Bz, ∆Φ, vz) = L(Ψ, Bz, Φ, vz)

with the operator

L(λ, ν, α) =



η0∆ −αΨ′
0∂x −αΨ′

0∂x 0

α[Ψ′
0∂x∆−Ψ′′′

0 ∂x] η0∆ + η′0∂y 0 −Ψ′
0∂x

Ψ′′′
0 ∂x −Ψ′

0∂x∆ 0 ν∆2 0

0 −Ψ′
0∂x 0 ν∆


(21)

and the boundary conditions (18).
Using a Fourier-ansatz like

Ψ(x, y) =
∑
k

Ψk(y)e(ωkt+ikx)

for every variable leads to the following set of ordinary differential equations

ωkΨk =η0

(
Ψ′′

k − k2Ψk

)
− ikΨ′

0Φk − iαΨ′
0kBzk

,

ωkBzk
=− ikvzk

+ η0

(
B′′

zk
− k2Bzk

)
+ η′0B

′
zk

+ α
[
Ψ′

0

(
ikΨ′′

k − ik3Ψk

)
− ikΨ′′′

0 Ψk

]
,

ωk

(
Φ′′

k − k2Φk

)
=ikΨ′′′

0 Ψk −Ψ′
0

(
ikΨ′′

k − ik3Ψk

)
+ ν

(
k4Φk − 2k2Φ′′

k + Φ
(4)
k

)
,

ωkvzk
=− ikΨ′

0Bzk
+ ν

(
v′′zk

− k2vzk

)
,

(22)

which is a generalized eigenvalue problem for the eigenfunction µk(y) =
(Ψk(y), Bzk

(y), Φk(y), vzk
(y)).

We normalize the marginal modes by〈〈
(Ψi, Φi), (Ψj, Φj)

〉〉
= δij
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using the the scalar product

〈〈A(x, y),B(x, y)〉〉 =
∑

i

〈Ai(x, y), Bi(x, y)〉

with

〈A(x, y), B(x, y)〉 =
∫
Ω

A(x, y) ·B(x, y)dτ =
∫ yR

−yR

∫ 2π

0
A(x, y) ·B(x, y)dxdy.

We examine the case in which only the k = 1-mode becomes marginal. For
every k we computed a few eigenvalues with the largest real part and the
corresponding modes. This was done numerically where we dicretised the y-
dependence into 256 steps. For solving the dicretised eigenvalue problem we
used the Arpack++-Library [10].
Let ωc

k be the eigenvalue with the maximal real part for a given k. An continu-
ous interpolation of the real parts of ωc

k is shown in Fig. 3. We constructed the
marginal eigenvalue so that it lies at the local maximum of the interpolated
graph. This was done with the simplex-downhill-method and we found the
following marginal eigenvalues according to several Hall-parameters.

λc νc α Re(ωc
1)

3.383 5.302 · 10−6 0 −1.952 · 10−8

3.369 5.135 · 10−6 5 1.075 · 10−8

3.337 4.792 · 10−6 10 −1.904 · 10−8

3.300 4.489 · 10−6 15 −8.516 · 10−9

3.265 4.315 · 10−6 20 −2.596 · 10−8

3.233 4.296 · 10−6 25 −2.014 · 10−8

The imaginary part of ωc
1 vanishes for all parameter. The real part of the second

greatest eigenvalue is about -0.003, so that a constraint of the applicability of
the center manifold theory is fulfilled.
From the complex marginal modes one can construct real modes. Due to

the fact that with every solution its complex conjugate is also a solution one
obtains the following two real marginal modes:

µ1 =



Ψ1

B1
z

Φ1

v1
z


=



Ψ1(y) cos(x)

Bz1(y) sin(x)

Φ1(y) sin(x)

vz1(y) cos(x)


; µ2 =



Ψ2

B2
z

Φ2

v2
z


=



−Ψ1(y) sin(x)

Bz1(y) cos(x)

Φ1(y) cos(x)

−vz1(y) sin(x)


(23)
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The figs. 4 and 5 show the computed modes for a couple of Hall-parameters.
One observes that the general structure remains nearly the same, while the
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amplitudes of the Bz1- and vz1- modes rise by increasing the Hall-parameter.
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4.3 Series expansion of the basic equations

The amplitude equations (3) become easier if one takes into account the sym-
metries of the problem. The basic equations possess the following symmetries:

• translation T : if µ(x, y) is a solution of the basic equations, so Tµ(x, y) =
µ(x + x0, y) as well

• parity S: if µ(x, y) is a solution of the basic equations, so Sµ(x, y) =
(Ψ,−Bz,−Φ, vz)(−x, y) as well

As shown in Sattinger [11] for the Lyaponov-Schmidt procedure and in Grauer
[3] for the center manifold theory this symmetries affect the amplitude equa-
tions. Due to the symmetries they take the simple form

ȧ1 = C0a1 + C1a1

(
a2

1 + a2
2

)
ȧ2 = C0a2 + C1a2

(
a2

1 + a2
2

) (24)

Comparing this with (5) yields

C0 = A13
1 a3 + A14

1 a4 + ...,

C1 = A111
1 + A1113

1 a3 + A1114
1 a4 + ...,

A13
1 = A23

2 , A14
1 = A24

2 ,

A111
1 = A122

1 = A111
2 = A122

2 ,

A1113
1 = A1223

2 = A2113
2 ,

Restricting oneself in considering only linear dependence of the coefficients
with respect to the parameters (20) one obtains

C0 = A13
1 a3 + A14

1 a4

C1 = A111
1

In order to study the bifurcation of the equilibrium (15) one only needs to
compute the coefficients A13

1 , A14
1 and A111

1 .
Inserting (3) into the basic equations (17) yields equations for every order
O(|x|). Terms of order O(|x|2) are:

∑
1≤i≤j≤4

aiajL
c



Ψij

Bij
z

Φij

vij
z


=



Ψinh

Binh
z

Φinh

vinh
z


(25)
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Lc is the linear operator defined by (21) for the critical parameter values
λ = λc, ν = νc. The inhomogeneity is given by

Ψinh =
2∑

i=1

∑
1≤i≤j≤4

Ajk
i ajakΨ

i +
∑

1≤i≤j≤2

(
[Φi, Ψj] + α[Bi

z, Ψ
j]

)

−
2∑

i=1

aia3

(
(∂a3η0) |0(∆Ψi)− (∂a3Ψ0) |0(∂xΦ

i)− αc (∂a3Ψ0) |0(∂xB
i
z)

)

Binh
z =

2∑
i=1

∑
1≤i≤j≤4

Ajk
i ajakB

i
z +

∑
1≤i≤j≤2

(
[Φi, Ψj] + α[Bi

z, Ψ
j]

)

−
2∑

i=1

aia3

(
− (∂a3Ψ

′
0) |0(∂xv

i
z) + (∂a3η0) |0(∆Bi

z) + (∂a3η
′
0) |0(∂yB

i
z)

+ α
[
(∂a3Ψ

′
0) |0(∂x∆Ψi)− (∂a3Ψ

′′′
0 ) |0(∂xΨ

i)
])

Φinh =
2∑

i=1

∑
1≤i≤j≤4

Ajk
i ajakΦ

i −
∑

1≤i≤j≤2

(
[Φi, ∆Φj] + [∆Ψj, Ψi]

)

−
2∑

i=1

aia3

(
(∂a3Ψ

′′′
0 ) |0(∂xΨ

i)− (∂a3Ψ
′
0) |0(∂x∆Ψ)

)
−

2∑
i=1

aia4∆
2Φi

vinh
z = −

2∑
i=1

∑
1≤i≤j≤4

Ajk
i ajakv

i
z −

∑
1≤i≤j≤2

(
[Φi, vj

z] + [Bj
z , Ψ

i]
)

+
2∑

i=1

aia3 (∂a3Ψ
′
0) |0(∂xB

i
z)−

2∑
i=1

aia4∆vi
z

Resolvability of (25) (Fredholm alternative) demands that the inhomogeneity
is in the range of Lc. This is equivalent to the condition that the inhomogeneity
is not in the kernel of the adjoint operator L̃c. The adjoint operator is given
by

L̃c =



η0∆ + 2η′0∂y + η′′0 −αΨ′
0∆∂x − 2αΨ′′′

0 ∂y∂x Ψ′
0∆∂x + 2Ψ′′

0∂y∂x 0

αΨ′
0∂x η0∆ + η′0∂y 0 Ψ′

0∂
2
x

Ψ′
0∂x 0 νc∆2 0

0 Ψ′
0∂x 0 νc∂x∆


(26)

with the boundary conditions

Ψ̃ = Φ̃ = B̃z = ṽz = 0 at y = ±yR,

∆Φ̃ = ∆Ψ̃ = 0 at y = ±yR and

all variables are 2π − periodic in x.
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We denote an element of the kernel of L̃c by µ̃⊥j = (Ψ̃⊥j, B̃z
⊥j

, Φ̃⊥j, ṽz
⊥j) and

choose the following normalization

〈〈
(Ψi, Bi

z, ∆Φi, vi
z), (Ψ̃

⊥j, B̃z
⊥j

, Φ̃⊥j, ṽz
⊥j)

〉〉
= δij. (27)

We computed the kernel of L̃c by inserting an Fourier-ansatz. The resulting
homogeneous ordinary differential equation has been solved by regarding her
as an eigenvalue problem for the eigenvalue zero. Again we treated this prob-
lem with the Arpack-library.
Projecting the equation (25) onto µ̃⊥1 yields the coefficients

A13
1 =

〈
((∂a3η0)|0∆Ψ1 − (∂a3Ψ0)|0∂xΦ

1 − αc(∂a3Ψ0)|0∂xB
1
z , Ψ̃

⊥1
〉

+
〈
(∂a3η0)|0∆B1

z − (∂a3Ψ
′
0)|0∂xv

1
z + (∂a3η

′
0)|0∂yB

1
z

+ αc((∂a3Ψ
′
0)|0∂x∆Ψ1 − (∂a3Ψ

′′′
0 )|0∂xΨ

1), B̃z
⊥1

〉

+
〈
(∂a3Ψ

′′′
0 )|0∂xΨ

1 − (∂a3Ψ
′
0)|0∂x∆Ψ1, Φ̃⊥1

〉
+

〈
(∂a3Ψ

′
0)|0∂xB

1
z , ṽz

⊥1
〉

A14
1 =

〈
∆2Φ1, Φ̃⊥1

〉

(28)

In order to compute the coefficient A111
1 one has to go to order O(|x|3). Once

again projecting the resulting equations onto the adjoint kernel yields

A111
1 =

〈
[Ψ1, Φ11] + [Ψ11, Φ1] + αc

(
[Ψ1, B11

z ] + [Ψ11, B1
z ]

)
, Ψ̃⊥1

〉
+

〈
[B1

z , Φ
11] + [B11

z , Φ1] + [Ψ1, v11
z ] + [Ψ11, v1

z ]

+ αc
(
[∆Ψ1, Ψ11] + [∆Ψ11, Ψ1]

)
, B̃⊥1

z

〉
+

〈
[Ψ1, ∆Ψ11] + [Ψ11, ∆Ψ1] + [∆Φ1, Φ11] + [∆Φ11, Φ1], Φ̃⊥1

〉
+

〈
[v1

z , Φ
11] + [v11

z , Φ1] + [Ψ1, B11
z ] + [Ψ11, B1

z ], ṽ
⊥1
z

〉
.

(29)

The unknown “slaved” mode (Ψ11, B11
z , Φ11, v11

z ) is given by equation (25) with
i = j = k = l = 1. Inserting a Fourier-ansatz yields an ordinary differential
equation, which was solved by use of an appropriate function provided by the
Arpack-library.
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4.4 The amplitude equations

The amplitude equations (24) written in polar coordinates (a, δ), a, δ ∈ R are

ȧ = C0a + C1a
3,

δ̇ = 0,
(30)

with

C0 = A13
1 a3 + A14

1 a4,

C1 = A111
1 .

For C1 = −1 this is a normal form of a pitchfork bifurcation at C0 = 0.
The coefficient C0 depends on a3 and a4. In order to study the general be-
haviour of the amplitude a of the marginal modes with respect to the Hall-
parameter we set a4 = 0 (keeping the viscosity constant) whereby C0 only
depends on the parameter of the magnetic field λ. Now we choose λ = 0.1
so that a2

0 = −C0/C1 is a fixed point of (30). We computed the equilibrium
amplitude a0 for several Hall-parameters α:

α 0 5 10 15 20 25

a0/10−4 2.112 2.156 2.315 2.677 3.535 7.899

The amplitude increases with respect to the Hall-parameter.
Now we can construct the solutions according to this equilibrium amplitudes.
Up to first order they are (in polar coordinates)

Ψ = Ψ0 + aΨ1 cos(x + δ),

Bz = aBz1 sin(x + δ),

Φ = aΦ1 sin(x + δ),

vz = avz1 cos(x + δ),

For the visualization we choose δ = π. Fig. 6 shows contour plots of the mag-
netic flux function in [0, 2π] × [−0.01, 0.01] for the Hall-parameter 0 and 25,
respectively. The contour lines correspond to the magnetic field lines. Com-
pared to the primary equilibrium (15) they are reconnected. The separatrices
separates the magnetic islands from the remaining plasma. They are spread
at the magnetic X-point with respect to the Hall-parameter.
The figs. 7 - 8 show contour plots of Bz, Φ and vz for α = 5 and α =

25, respectively. (for α = 0 the z-components vanish). Here the entire area
[0, 2π] × [−0.5, 0.5] is shown. In the case of Bz one observes a quadrupole
structure which in numerical [2] simulations is found to be characteristic for
the influence of the Hall-term on the reconnection process.
In order to study the influence of the y-dimension on the results we enlarged
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Fig. 6. Contour plot of the magnetic flux function Ψ for α = 0 and α = 25

the y-length of the rectangular area by a factor of 2, this means yR = 1. Now
the marginal fix points are about (λc = 2.9, ν = 1.5 · 10−3). The magnetic
field parameter is a little bit smaller and the viscosity about three orders of
magnitude greater. Therefore, this configuration is more unstable than the
smaller one. The reason for this is the stabilising influence of the boundaries.
The boundary condition prescribes that perturbation (the marginal modes)
at the boundaries are zero.
For the amplitude a0 we found in larger case:
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Fig. 7. Contour plot of Bz and for Φ for α = 5
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α 0 1 3 5

a0/10−3 8.136 8.281 9.655 17.23

The corresponding marginal modes are given by the figs. 9 - 10. Here ampli-
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Fig. 9. Marginal Ψ1 and Bz1 - modes for several Hall-parameters, yR = 1
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Fig. 10. Marginal Φ1 and vz1 - modes for several Hall-parameters, yR = 1

tude a0 is about a factor of 40 greater than in the case of a smaller rectangle
with yR = 0.5. The amplitude increases stronger so that even for a Hall-
parameter about 3 the effect of the Hall-term is significant.
Furthermore the shape of the marginal modes changed. They are broadened
towards the boundaries.

5 Conclusions

In this paper we calculated the influence of the Hall-term on the island width
of a tearing instability. This has been done in the framework of a simple model
using resistivity as the non ideal process to achieve a change in the topology of
the magnetic field. Using center manifold theory, we could calculate the depen-
dence of the tearing mode island width on the Hall-parameter α. The result
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was an increase of the island width with increasing the strength of the Hall-
term. This is in agreement with recent numerical simulations (see [2]), which
showed that in contrast to a Sweet-Parker like reconnection in MHD without
a Hall-term, the inclusion of a Hall-term could alter the the dynamics to a
Petschek like behavior with a pronounced X-point in the reconnection zone. In
addition, the center manifold reduction could also reproduce the quadrupole
like structure of the perpendicular magnetic field (see Fig. 7) as a consequence
of the enhanced perpendicular velocity (see Fig. 8) again as observed in numer-
ical simulations. Many nontrivial things still have to come, where the major
points are more realistic parameters as in the GEM study and the replacement
of resistivity by electron inertia. Work on this is in progress.
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