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ABSTRACT

We present an adaptive mesh approach to high performance comprehensive investigation of dynamics of light
and plasma pattens during the process of direct laser inscription. The results reveal extreme variations of spatial
and temporal scales and tremendous complexity of these patterns which was not feasible to study previously.
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1. INTRODUCTION

Direct inscription of the complex microstructures in refractive materials by means of intense femtosecond radi-
ation is one of the novel enabling technologies in modern photonics. This technology implies that pre-focused
femtosecond light pulses produce phase transitions and create domains with a modified refractive index. Nonlin-
ear propagation of femtosecond intense laser pulses in dielectrics exhibits a wide range of fascinating phenomena
including conical emission,1 X-waves,2 self-reconstruction,3 self-healing2 light filaments plasma breakdown.4

Proof of principle experiments of the potential of fs inscription for microfabrication of photonic structures was
demonstrated almost a decade ago.5 It has now become a very promising method of microfabrication.6–8 Other
interesting applications aim to achieve the longest possible self-guiding filaments to deliver the energy through
the bulk of material9

Self-focusing of the intense laser pulse is a key physical phenomenon leading to a multi-photon ionization at
its final stage. In fact the very formation of plasma filaments limits the catastrophic damage due to defocusing
and multi-photon absorption. Eventually, the thermalization and recombination of the plasma filament leads
to the modification of medium and a distributed profile of refractive index is produced. The dynamics of the
light-induced plasma filaments is extremely complex and defined by many factors. It is an extremely fast process
evolving at the very fine spatial scales. In this paper, we have developed and adaptive numerical approach to
the detailed study of the evolution of plasma filaments and the role of pulse and media parameters on the shape
of resulting filaments. We consider a geometry in which an incident Gaussian input field is focused through a
lens into the planar silica sample sample. For the purposes of this paper, only one focusing configuration and
a single initial pulsewidth are considered. To demonstrate the principle of adaptive mesh approach, we use a
simplified version of the widely accepted model of the nonlinear propagation of the laser pulse as it was formulated
in Ref..10 It is essentially a nonlinear Schrödinger equation (NLSE) coupled with an equation describing the
plasma generation. This basic model describes effects of self-focusing, multiphoton absorption (MPA), and group
velocity dispersion (GVD). Pure NLSE is a generic model which ultimately appears in consistent description of
envelope amplitude of the nonlinear wave packets. It is widely used to describe fs light propagation11 and has
been extensively studied. One of the most striking features of the NLSE is catastrophic self-focusing or beam
collapse which means a formation of a singularity in finite propagation length.12 Beam collapse happens in the
framework stationary NLSE if the pulse power exceeds a certain critical value. Formally, the on-axis intensity
achieves an infinitely high value at some critical propagation length. However, in the extended physical models
which account for dispersion and nonlinear absorption a formation of singularity is arrested.13 The nonlinear
evolution of the collapsing beam with the presence of the arresting effects is extremely rich. Mathematically it
poses a stiff multidimensional evolution problem. Straightforward numerical modeling of such problems is a very
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Figure 1. Pulse energy as a function of the propagation distance for different input peak powers. Horizontal dashed line
corresponds to the critical power for a given initial pulsewidth t0 = 60 fs.

difficult challenge due to the multiscale nature of underlying physical phenomena. In this paper, we address an
intrinsic stiffness of the mathematical problem by introducing a hierarchy of the adaptively refined grids which
are dynamically adjusted for proper resolution of the fine spatial structures and temporal features of the beam.
We report on the development of a portable computational framework for the parallel, mesh-adaptive solution
of system of a 3D parabolic wave equation for envelope amplitude of electromagnetic field coupled with the
rate equation for plasma density. Local mesh refinement is realized by the recursive bisection of grid blocks
along each spatial and temporal dimensions. Implemented numerical schemes include standard finite-difference
and spectral methods. Non-adaptive solver has also been implemented for back-to-back accuracy tests and
performance profiling. Parallel execution is achieved through a configurable hybrid of POSIX-multi-threading
and MPI-distribution with dynamic load balancing.

2. THEORETICAL MODEL

2.1. Equations

This section describes a theoretical model used for femtosecond pulse propagation in silica. It was originally
suggested by Feit and Fleck14 and later developed into a fairly complex model, see e.g. Refs.9, 15–21 For the
purposes of this paper, a simplified model is used, essentially similar to that described by Feng et al.10:
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The terms on the left-hand side of Eq.(1) describe effects of beam diffraction, group velocity dispersion (GVD),
and Kerr nonlinearity. The latter is responsible for a catastrophic self-focusing which is limited by the effects
described by terms on the right-hand side of Eq.(1), namely plasma absorption and multi-photon absorption.
In Eq.(1) the laser beam propagation along the z axis is assumed and this equation is essentially a reduced
paraxial approximation of the wave equation for the complex electric field envelope E with a carrier frequency
ω in the moving frame of coordinates. Here k = nbk0 = nbω/c is the propagation vector, k′′ = ∂2k(ω)/∂ω2

is the GVD parameter, nb(ω)is a linear refractive index of the bulk medium, n2 is the nonlinear coefficient
describing nonlinear self-modulation (Kerr effect) such that n2|E|2 is a nonlinear contribution to the refractive



index, σbs is the cross section for inverse Bremsstrallung, τ is the electron relaxation time, Eg is the ionization
energy, and the quantity β(K) controls the K–photon absorption. Equation (2) implements the Drude model for
electron-hole plasma in the bulk of silica and describes the evolution of the electron density ρ. The first term on
the right-hand side is responsible for the avalanche impact ionization and the second term — for the ionization
resulting from MPA. Equation (2) is suitable for description of the sub–picosecond laser pulses when plasma
diffusion is negligible. Here, the wave equation describing the evolution of the focused optical beam in the form
of NLSE (left-hand terms in Eq.(1)) which is extended to include plasma generation, pulse-plasma interaction,
and MPA (terms on the right-hand of Eq.(1). Group velocity dispersion included in Eq.(1) has been shown to
lead to pulse splitting and to arrest the collapse.13, 22–26

2.2. Physical parameters

In all our simulations the Gaussian initial condition:
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where r0 is the waist of the incident beam, tp defines the conventionally defined pulsewidth tFWHM =
√

2 ln 2tp ≈
1.177tp, and f is a focal length of the objective lens.

For all our simulations a fixed single values of r0 = 2.5 mm and tp = 60 fs was used. This fixed pulsewidth
corresponds to the critical energy of 116 nJ for a critical power Pcr = λ2

0/2πnbn2 ≈ 2.3 MW in fused silica with
nb = 1.453 being the linear refraction index and n2 = 3.2×10−16 cm2/W the nonlinear refraction index. Critical
power is proven to be a crucial parameter to determine the evolution of the collapsing beam. We assume the
laser wavelength λ0 to be 800 nm and the focusing lens to have f = 40 mm.

The other parameters for fused silica, used in simulations are described below. GVD coefficient k′′ = 361
fs2/cm, inverse Bremsstrahlung cross section σbs = 2.78 × 10−18 cm2. Multiphoton absorption coefficient can
be expressed as β(K)~ωσKρat, whith ρat = 2.1 × 1022 atoms/cm3 being a material concentration and σK =
1.3× 10−55 cm2K/WK/s. We assume five–photon ionization with K = 5 and Eg = 7.6 eV in fused silica.

The quation (2) can be expressed as
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is defined to be an MPA threshold as the plasma ionization rate becomes very steep when the intensity I exceeds
IMPA. ρBD = 1.7 × 1021 is a plasma breakdown density. Being important physical thresholds, both IMPA

and ρBD were used in a very useful normalization of physical variables to dimensionless ones for performing
simulations. The choice of normalization is irrelevant to discuss as all the parameters and fields throughout this
paper are produced with their physical values.

3. ADAPTIVE NUMERICAL METHOD

The principle of adaptive mesh refinement is rather simple. Starting with one grid of given resolution (in most
of our 3D configurations we currently chose 512×64×64 mesh points) called master grid, the partial differential
equations (1-2) are solved with a scheme summarized below. After a certain number of steps along propagation
axis z, it is checked whether the local numerical resolution is still sufficient on the entire grid. If it is detected that
finer grid is locally needed, a refinement is carried out and a child grid is created using the interface with a parent
grid as a new boundary. In order to prepare for it, the points where the error of discretization exceeds a given
value are marked on the grid. In addition to these grid points, adjacent ones are included. These marked points
of insufficient numerical resolution have to be covered with rectangular grids of finer resolution as efficiently as
possible. Our algorithm for this purpose is very similar to the one used by Berger and Colella,27 and it was
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Figure 2. Dynamics of the intensity and the plasma density at different positions along axis z.
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Figure 3. (Fig. 2 cont...)Dynamics of the intensity and the plasma density at different positions along axis z.
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Figure 4. Contours of the plasma density at infinite time after electric field is vanished for different energies corresponding
to the initial values in Fig.(1): Supercritical — 187 nJ; Critical — 120 nJ, Subcritical — 68 nJ.



described in detail by Friedel et al..28 On the child grids, the spatial discretization length and the time step are
reduced by a certain refinement factor. The new grids are filled with data obtained by interpolation from the
preceding parent (coarser) level. The integration advances on both the parent and the child levels until the local
resolution becomes insufficient again. The rebuilding of the grid hierarchy starting with the current level and
proceeding on all subsequent levels begins when the above-mentioned threshold for the error is locally exceeded,
e.g., if the domains of high intensity have left the finer grids, or if local gradients have developed, such that the
prescribed accuracy is not guaranteed. The points of insufficient numerical resolution are collected on all grids
of each level. On the basis of the resulting list of these points, new grids are generated. After assuring that the
newly generated grids are properly embedded in their parent grids, interpolated data are filled in. If data existed
on grids of the same level before the regridding, these are substituted to the interpolated data from the parents
grids.

Solution of the model described in Introduction in the outlined framework requires selecting an appropriate
numerical integration scheme. It turned out that the optimal performance can be achieved by using a different
scheme on the refined levels than on the base level, when taking into account that arbitrary mesh sizes on the
refined levels occurred. On the base level, we applied an operator–splitting method which is second–order accurate
in z. Radial diffraction term in the Laplacian operator of Eq.(1) is integrated by means of Crank–Nicholson
scheme with zero boundary condition at the maximum radius. Both the angular term of the transverse diffraction
operator and the dispersion operator are diagonal in Fourier space thus Fast Fourier Transform was utilized for
numerical integration of these terms. It is worth noting that neither periodic or zero global boundary conditions
both in transverse space and time do not impose a significant restriction on the problem considered, because
the localized wave-packets vanish at the boundaries during the entire process of focusing and defocusing after
the pulse passes the focal domain. On the refined meshes we apply a semi–implicit scheme of Crank-Nicholson
type, which was used by, e.g., Pietsch et al.29 and also utilized in a previous modelling on NLSE with normal
dispersion.13 The proposed discretization reads[
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where κ, delta, s, ν, and µ are dimensionless parameters introduced in an obvious way. To invert the operator
on the left-hand side of Eq.(6), Helmholtz–type equation must be solved. Since this linear operator is close to
identity for small steps ∆z. A standard Gauss–Seidel relaxation method is employed with red/black ordering
on each grid. In order to solve the problem globally, an additive Schwarz iteration30 is performed on top of
the per–grid solvers. It is important to comment on the refinement criterion. We calculate the right–hand side
of Eq.(6) based on the actual grid spacing and twice the grid spacing. When the difference exceeds a given
threshold, those mesh points are marked under-resolved and are subject to refinement. The threshold value
conditioning the refinement was determined such that a sufficient resolution was guaranteed during the evolution
along the propagation axis z. The length of the integration step ∆z was dynamically adapted to ensure that at
all times the i) Courant–Friedrich–Levy condition was met to enforce the numerical stability and the iterative
method converged at a prescribed minimal rate and ii) the maximal relative increment of both the amplitude
and the nonlinear phase resulting from Eq.(7) was always kept less than a prescribed limit, usually 1%.

The implementation of the adaptive mesh refinement strategy described above is done in C++. We make use
of a non-adaptive solver described above for handling the master grid. This solver was also used for benchmarking
and back-to-back accuracy testing of adaptive solver. Handling of the data structures is separated from the
problem under consideration. Therefore, it is relatively easy to use the code for other types of problems including
various generalizations of the system Eqs.(1-2). Since on each grid the advance along z and the Helmholtz-type
equation can be solved independently and the number of grids supersedes the number of processors available,
parallelization is highly efficient.



4. NONLINEAR DYNAMICS

There are two distinct typical setups related to the focusing geometry. If the goal is to produce the longest possible
filament, then the loose focusing and small spot size are required.2, 9, 31 However in the microfabrication context
the opposite goal is usually desirable. The focused spot is often required to be as small as possible and the
absorbed energy is needed to be within a narrow window between the thresholds of inscription and damage.
This is an extremely difficult challenge because of the huge difference in spatial and temporal scales of the
incident laser beam and fine features of light and plasma patterns in the vicinity of the focal point. The adaptive
procedure described above allows for accurate treatment of multiscale evolution which results in stationary (in the
framework of the model considered) distribution of plasma. The mechanisms of eventual plasma recombination
and subsequent relaxation of the medium are extremely complex. For example, the latter can be described as
a sophisticated 3D thermo-elasto-plastic processes.32 The purpose of the present work is to find an accurate
spatial distribution of plasma needed for such or similar subsequent analysis. Typical asymptotic plasma density
profiles for different initial pulse energies are shown energies are shown in Figure 4. Density plots of plasma
concentrations are shown in one transverse and one propagation coordinates. It shows that subcritical evolution
(Pin < Pcr)leads to a smooth plasma cloud without visible fine structure. This regime is probably the most
attractive from the microfabrication viewpoint because it is characterized by the smooth subcritical evolution of
the peak intensity. Larger energies lead to development of the pronounced periodic fringes which result from the
relaxation oscillations of a collapsing beam after the collapse is arrested by the multiphoton absorption.

Nontrivial complex light and plasma dynamics and formation of interesting light patterns are illustrated by
Figures 2-3. Snapshots of the beam intensity profile in transverse space and time are presented at different
points along the propagation axis in the vicinity of the focal point for supercritical case Pin > Pcr. Originally, an
intensity profile forms a distinct crescent in x− t plane. It is then evolved so that the shoulders of this crescent
split from the front of the pulse and form a pair of satellite pulses which rise being fed by a contracting beam.
This pair is eventually coalesce to form a secondary crescent pulse following the remains of the front pulse. Then
this scenario repeats for the newborn crescent pulse which even has the same amplitude just under the MPA
threshold. A cascade of such crescents result in periodic fringes of plasma density until finally significant fraction
of the original pulse energy is absorbed.

5. CONCLUSION

A high performance adaptive mesh platform is developed for comprehensive numerical modeling of the femtosec-
ond inscription of photonic structures in silica during the process of nonlinear propagation of tightly focused
femtosecond laser radiation. Proof of principle is demonstrated and a few cases studies is performed. Detailed
numerical modeling of fine dynamics in the vicinity of the focal point reveals an extremely complex behavior of
the focused light coupled to generated plasma. The resulting light and plasma patterns have very complex fine
structure which was impossible to establish prior to this study.
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13. K. Germaschewski, R. Grauer, L. Bergé, V. K. Mezentsev, and J. J. Rasmussen, “Splittings, coalescence,

bunch and snake patterns in the 3d nonlinear schr ”
14. M. D. Feit and J. A. Fleck, “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl.

Phys. Lett. 24, pp. 169–172, 1974.
15. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” 78, pp. 3282–

3285, 1997.
16. J. K. Ranka and A. L. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing

of ultrashort pulses,” Opt. Lett. 23, pp. 534–536, 1998.
17. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, pp. 3582–3585, 2000.
18. M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev.

Lett. 89, p. 283902, 2002.
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