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Abstract

A standard starting point for the simulation of collisionless reconnection is the Harris equilibrium
which is made up of a current sheet that separates two regions of opposing magnetic field.
Magnetohydrodynamic simulations of collisionless reconnection usually include a homogeneous
background density for reasons of numerical stability. While, in some cases, this is a realistic
assumption, the background density may introduce new effects both due to the more involved
structure of the distribution function or due to the fact that the Alfvèn speed remains finite far
away from the current sheet. We present a fully kinetic Vlasov simulation of the perturbed Harris
equilibrium using a Vlasov code. Parameters are chosen to match the Geospace Environment
Modeling (GEM) Magnetic Reconnection Challenge but excluding the background density. This
allows to compare with earlier simulations [Schmitz, Grauer, Phys. Plasmas 13 (2006) 092309]
which include the background density. It is found that the absence of a background density causes
the reconnection rate to be higher. On the other hand, the time until the onset of reconnection is
hardly affected. Again the off diagonal elements of the pressure tensor are found to be important
on the X–line but with modified importance for the individual terms.
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1. Introduction

Magnetic reconnection is widely believed to be the most important process for con-
verting magnetic energy into kinetic energy of the plasma. It is relevant for both space
and laboratory plasmas and thought to be the main player for energy release in solar
flares, coronal mass ejections and substorms in the earth’s magnetosphere.

The models used to investigate collisionless magnetic reconnection usually start from
the Harris–equilibrium. In this equilibrium two regions of oppositely oriented magnetic
field lines are separated by a current sheet. A small perturbation of this equilibrium
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leads to a localised narrowing of the current sheet until the field lines reconnect on the
X–line. In the ideal MHD model, the frozen field condition prohibits such a reconnection.
Therefore the reconnection process depends on a nonideal mechanism that breaks the
frozen field condition. In the last years it has become apparent that the Hall–MHD
framework provides a minimum model in understanding the fast reconnection (see eg.
[1–3]). The Hall–Term itself, however, cannot provide this mechanism, since the field lines
are still frozen in the electron flow. Due to symmetry constraints, only the electron inertia
and the off–diagonal terms of the pressure tensor can provide a nonideal mechanism on
the X–line itself (see e.g Refs. [4–7]).

In this study, we use a Vlasov code to investigate collisionless reconnection without
background density which is relevant, for example, for magnetotail reconnection. Apart
from the background density, all other parameters are identical to the GEM setup to
allow comparison. In the next section we briefly present the methods used in our in-
vestigation. The setup including the initial conditions and the boundary conditions is
described in section 3. In section 4 we discuss the results. Separate subsections are ded-
icated to the discussion of the contributions of the terms in Ohm’s law, especially the
off–diagonal components of the pressure tensor, and to the detailed discussion of the
electron distribution function. Section 5 will give a summary and present conclusions.

2. Methods

The kinetic description starts from the distribution functions fk(x,v, t) of species
k, where k = i, e denotes ions or electrons. The time development of the distribution
function is described by the Vlasov equation

∂fk

∂t
+ v · ∇fk +

qk
mk

(E + v ×B) · ∇vfk = 0.

Here qk and mk are the charge and the mass of the particles of species k. The Vlasov
equation describes the incompressible flow of the species phase space densities under the
influence of the electromagnetic fields.

The electromagnetic fields are solved using the Darwin approximation (see, for example
Refs. [8,9]). The elimination of the vacuum modes in the Darwin approximation allows
larger time-steps in the simulation since only the slower non–relativistic waves have to
be resolved.

To close the set of equations of the Vlasov–Darwin system the charge density ρ and
the current density j have to be calculated from the distribution function,

ρ =
∑

k

qk

∫
fk(x,v)d3v , j =

∑
k

qk

∫
vfk(x,v)d3v . (1)

We use a 2 1
2–dimensional Vlasov–code described in Refs. [9,10]. The term 2 1

2–dimensio-
nal means, we restrict the simulations to 2 dimensions in space but include all three
velocity dimensions. The integration scheme is based on a flux conservative and posi-
tive scheme [11] which obeys the maximum principle and suffers from relatively little
numerical diffusion.
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Fig. 1. Time evolution of the reconnected magnetic flux Ψ throughout the simulation run without
background density (solid line) and with background density (dashed line).

3. Setup

The reconnection setup is identical to the parameters of the GEM magnetic reconnec-
tion challenge [1]. The initial conditions are based on the Harris sheet equilibrium [12]
in the x,y–plane

B(y) = B0 tanh
( y
λ

)
x̂. (2)

The particles have a shifted Maxwellian distribution with constant electron and ion tem-
peratures Ti,e and constant electron and ion drift velocities V0i,e. The density distribution
is then given by n0(y) = n0 sech2 (y/λ).

The total system size is Lx = 25.6λi by Ly = 12.8λi, where λi is the ion inertial
length. Because of the symmetry constraints we simulate only one quarter of the total
system size: 0 ≤ x ≤ Lx/2 and 0 ≤ y ≤ Ly/2. The sheet half thickness is chosen to be
λ = 0.5λi. The temperature ratio is Te/Ti = 0.2 and a reduced mass ratio of mi/me = 25
is used. The simulation is performed on 256 × 128 grid points in space for the quarter
simulation box. This corresponds to a resolution of 512×256. This implies a grid spacing
of ∆x = ∆y = 0.05λi. The resolution in the velocity space was chosen to be 30× 30× 30
grid points. The simulation was performed on a 32 processor Opteron cluster and took
approximately 150 hours to complete.

An initial perturbation

ψ(x, y) = ψ0 cos(2πx/Lx) cos(πy/Ly) (3)

is added to the magnetic vector potential component Az. To place the system directly into
the nonlinear regime, the magnitude of the perturbation is chosen to be ψ0 = 0.1B0/λi.
We are not interested in the linear growth of the instability, but rather in the nonlinear
reconnection phase that follows.

4. Simulation Results

Figure 1 shows the reconnected flux Ψ =
∫ X

O
Bydx against time throughout the simu-

lation. For comparison, the flux for the simulation with a background density n∞ = 0.2
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Electron out of plane current je,z

Ion out of plane current ji,z

Fig. 2. The electron out of plane current je,z (upper panel) and the ion out of plane current ji,z (lower
panel) at time Ωit = 18.9

(see Ref [10]) is also shown. One can observe that the onset of the reconnection takes
place roughly at the same time for both cases, although it is slightly delayed for the
n∞ = 0 case. In the further development the n∞ = 0 case shows a reconnection which
is much faster than with a background density. This can be understood by the increase
of the Alfvèn speed as the density is reduced. In addition, one can observe oscillations
of the reconnected flux for the n∞ = 0 case after the fast reconnection phase. The av-
erage value during the first oscillations is higher than the highest value of the n∞ 6= 0
case. When reconnection stops, the plasma is almost completely trapped in the magnetic
island. During reconnection the ions are accelerated towards the centre of the island (O–
point). After reconnection stops the ions overshoot due to their inertia and the island
starts oscillating. This oscillation is visible in the reconnected flux for times tΩi ≥ 25.

Figure 2 shows the out of plane electron and ion current densities. The figures are
plotted at time Ωit = 18.9, when the reconnected flux reaches a value of Ψ = 1. The
features here are similar to the case with background density [10] but some differences
can be seen. The electron current density is decreased on the X–line compared to the
adjacent regions in the diffusion region. This dip in the electron current is largely due
to the lack of current carrying electrons. Both electron and ion density are almost zero
on the X–line. Also the electron current along the separatrix is not as pronounced as
in the n∞ = 0.2 case. Here the lack of current carrying electrons at the edges of the
magnetic island is responsible. Finally the lower electron density outside the island is
also the reason for a lower value of the quadrupolar out of plane magnetic field Bz (not
shown). The maximum value of Bz at time Ωit = 18.9 in this simulation is about 0.064
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Fig. 3. The off–diagonal components Pxz and Pyz of the pressure tensor divided by the density n at time
Ωit = 18.9

while for the n∞ = 0.2 case it was about 0.165.
The ion current density ji,z very much follows the particle density which is roughly

equal for both electrons and ions. One can observe a beginning formation of secondary
islands next to the diffusion region. We attribute this to the high growth rate of the
instability for the low density values. At later times the secondary island coalesces with
the main island.

In Figure 3 we plot the off diagonal components Pxz and Pyz of the electron pressure
tensor divided by the density. These two components are the main origin of the inductive
electric field Ez at the X–line. Due to symmetry conditions the electric field at the X–line
is given by Ez = (m/ne2)∂jz/∂t−(1/ne)(∂Pxz/∂x+∂Pyz/∂y). In [10] it was observed, for
the case with n∞ = 0.2, that the electron inertia played only a secondary role while the
two terms from the pressure tensor contributed to roughly equal amounts to the electric
field. Here we see that, for the n∞ = 0 case, the contribution of the Pxz term dominates
over the Pyz term. The maxima of Pxz/ne are more than a factor of 6 larger than the
maxima of Pyz/ne. The bar like structure of Pyz is still seen, as in [10], but the bars are
further apart, again reducing the gradient ∂Pyz/∂y. The Pxz originates from the bunched
gyro motion of the accelerated electrons in the outflow magnetic field. On the other hand
in [10] the Pyz term originated from the electrons that were accelerated in the inflow
region and crossed the neutral line due to their inertia while being accelerated in the
z–direction. Without background density these electrons are missing and the Pyz stays
small. As a consequence the source inductive electric field is made up almost completely
by the ∂Pxz/∂x contribution.
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5. Summary and Conclusions

We have performed a 2 1
2–dimensional Vlasov simulation of collisionless reconnection

without a background density. To allow comparison, all other parameters were chosen to
be equal to the GEM setup [1]. Some differences were found that could be attributed to
the lack of a background population. The onset of the fast reconnection was not influenced
by the background density but the reconnection rate was found to be considerably faster
when no background population was present. This increase in the reconnection rate can be
attributed to the faster Alfvèn velocity as the density decreases. The faster reconnection
rate causes secondary islands to form. However, no full development of secondary X–
lines could be observed as the secondary islands quickly coalesce with the main island.
In previous investigations it became apparent, that on the X–line only the off diagonal
components of the electron pressure tensor carry a major contribution to the reconnection
electric field. When a background density is present both the Pxz and Pyz contribute to
almost equal amounts. Due to the lack of inflowing electrons in the n∞ = 0 case, the Pyz

is greatly reduced and only the Pxz is dominant at the X–line.
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