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I. INTRODUCTION

The problem of spontaneous formation of singular nonlinear structures in fluids and

plasmas has attracted efforts of many researchers over the last two decades. For instance,

besides from being a fascinating open mathematical challenge [1–6] singular structures play

a dominant role in understanding intermittency in strong turbulent systems. This is man-

ifested in phenomenoligical models of fluid and plasma turbulence [7–10] as well as in the

high order statistics in Burgers turbulence [11–13]. A further example of the importance of

nearly singular structures is fast magnetic reconnection in collisionless plasmas: It is now

widely accepted [14, 15] that terms in Ohm‘s law that are beyond the ideal MHD model,

like the Hall term and electron inertia, produce a Petschek-like configuration [16] where a

localized x-point structure in compbination with the Hall dynamics is responsible for fast

reconnection rates.

Without solving the formation of singular structures and analysing their geometry, our

understanding of many properties of these systems remains incomplete. However, dynam-

ical mechanisms for singularities and corresponding small-scale structures are different in

different physical models. Below we consider a magnetized plasma, where the most im-

portant singular structures are current sheets (see [6, 14, 17] and references therein). The

tendency towards current sheet formation in plasmas can be explained already in the frame

of relatively simple models as the ideal Electron Magnetohydrodynamics (EMHD) [18–21],

which is known to be a particular simplified case of the more general two-fluid plasma model

[20, 22]. Particularly simple is the situation of axisymmetric EMHD-flows and a purely az-

imuthal magnetic field. Here, the system is described by a single scalar function related to

the frozen-in generalized electron vorticity [18, 20] which depends only on the radial coordi-

nate, the axial coordinate, and time. It’s evolution is determined by a nonlinear transport

equation, which reduces to the well known Burgers equation in the limit of vanishing elec-

tron mass, while the generalized electron vorticity in this limit coincides with the magnetic

field [18, 20]. Typical solutions of that nonlinear equation exhibit formation of a shock-like

gradient type singularity in the magnetic field after a finite time that corresponds to the

axial cross-section of a current sheet. Further development of the shock is governed both

by dissipation (finite resistivity and viscosity) and by nonlocal effects due to finite electron

mass [18, 20, 21].
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As these results from EMHD implicitly treat the ion component as an immobile back-

ground, one obvious question is whether, and how, the dynamical ion response would alter

the tendency of current sheet formation in these settings. To address this question, we start

from the ideal Hall-MHD model, i.e. taken into account the ion motion, but neglecting the

effect of electron inertia. In order to connect these new investigations to the previous work,

we will first start with the special case of a reduced system with known analytical solution

similar to the case described above. This serves to identify the fundamental underlying

mechanism responsible for the singularity formation as well as a test for the sophisticated

numerical treatment using block-structured adaptive mesh refinement [23] which is neces-

sary to resolve the small scale structures. Form these comparison, we could gain enough

confidence in the numerical method to draw conclusions for the general case with mobile

ions and answer the question whether or not the ion responce might prevent or inhibit the

current sheet formation.

II. THEORY

The equations of ideal Hall-MHD for the plasma mass density ρ, the ion velocity u, and

the magnetic field b can be written as follows

∂ρ

∂t
= −div(ρu), (1)

∂u

∂t
= [u× curlu] +

1

ρ
[curl b× b]−∇

(u2

2
+ w(ρ)

)
, (2)

∂b

∂t
= curl [(u− di

ρ
curl b)× b], (3)

where di is the ion inertial length, and w(ρ) is a known function determined by the

thermal pressure p(ρ), such that dw = dp/ρ (we consider either isentropic or isother-

mal flows). The above system admits axisymmetric solutions of the form ρ = ρ(z, r, t),

u = ezU(z, r, t) + erV (z, r, t), and b = eϕB(z, r, t) =: −eϕrρ(z, r, t)β(z, r, t), where z, r, ϕ

are cylindrical coordinates with unit vectors ez, er, eϕ. Let us also consider the generalized

ion vorticity

Ω = curlu + d−1
i b =: eϕrρ(z, r, t)α(z, r, t) . (4)

3



It is easily seen that the field Ω is frozen-in into the ion fluid, since the equation of motion

for Ω is
∂Ω

∂t
= curl [u×Ω] . (5)

The above introduced functions α and β possess important properties. Indeed, we can easily

obtain from Eqs.(1-3) that

∂ρ

∂t
+

1

r

∂

∂r
(rV ρ) +

∂

∂z
(Uρ) = 0, (6)

∂V

∂z
− ∂U

∂r
= rρ(α + d−1

i β), (7)

∂α

∂t
+ U

∂α

∂z
+ V

∂α

∂r
= 0, (8)

∂β

∂t
+ U

∂β

∂z
+ V

∂β

∂r
+ 2diβ

∂β

∂z
+ di

rβ

ρ

(
∂ρ

∂r

∂β

∂z
− ∂ρ

∂z

∂β

∂r

)
= 0. (9)

For brevity, below we use the subscripts t, z, r to denote the corresponding partial derivatives

of unknown functions. Eq.(8) implies that function α remains constant along the trajectories

determined by the ion velocity field ezU + erV . Analogously, from Eq.(9) it follows that

function β is transported by another vector field,

F = ez[U + diβ(2 + rρr/ρ)] + er[V − diβrρz/ρ]. (10)

Thus, the time evolution of the functions α and β is nothing else but just a motion of their

levels in z-r plane. Therefore, once bounded initially, these functions cannot grow at later

times. However, their gradients are allowed to increase significantly. From this point of view,

Eq.(9) deserves particular attention due to the term 2diββz, which produces a permanent

tendency towards shock formation in β-profile. Very obviously this tendency is manifested

in a region near the z-axis (r → 0), where the dominant terms in Eq.(9) are

βt + Uβz + 2diββz = 0. (11)

Except for the term Uβz, this is the well-known Burgers equation. For the quantity q = −βz

we have from Eq.(11) a remarkable equation

q̇ = −qUz + 2diq
2, (12)

where q̇ ≡ qt + (U + 2diβ)qz is the total (or convective) derivative along trajectories de-

termined by the field F on the axis. Eq.(12) can be easily solved along each particular
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trajectory,

q(t) = q(0)e−A(t)

[
1− 2diq(0)

∫ t

0

e−A(τ)dτ

]−1

, (13)

where A(t) is defined as the time integral of Uz on that trajectory,

A(t) ≡
∫ t

0

Uz(t1)dt1. (14)

These formulas clearly give us a finite-time singularity with max(q) ∼ (t? − t)−1, pro-

vided that q(0) > 0 and Uz < 0 (then, the term with U acts to accelerate the shock

formation). However, the singularity is still possible when Uz is positive but sufficiently

small. For instance, with globally bounded Uz < C the singularity definitely takes place if

2dimax(q(0)) > C.

For simplicity, we have considered above the case r → 0, but actually shocks can also

develop at r 6= 0 if only the term 2diββz locally dominates the other terms in Eq.(9) contain-

ing spatial derivatives βz and βr. The last term in Eq.(9) is a cross product, and therefore

is of less importance in typical situations when the gradients ∇ρ and ∇β have almost the

same direction in a singular domain. Most important terms, that can in general prevent the

shock formation, are the convective terms Uβz + V βr. However, if the gradients ∇U and

∇V remain bounded, the convective terms cannot stop singularity, provided max(q(0)) is

large enough. Indeed, this situation can be found in the weakly compressible limit, when |u|

and |b| are small compared to the speed of sound cs, and relative variations of the density

are small. In this case the weak compressibility condition ρ ≈ 1 makes the ion velocity field

u nearly divergence-free. Therefore, taking into account Eq.(7), for localized structures we

may conclude that the spatial derivatives of U and V are finite:

|∇U |, |∇V | ∼ l(α + d−1
i β),

where l is a constant characteristic length given by an initial state, and α and β are some

typical initial absolute values. Thus, having estimated different terms in Eq.(9), we naturally

suggest for this case the hypothesis that the evolution of the system will move towards finite-

time singularity formation, at least if the (rather strong) condition

l2(α + d−1
i β) . diβ (15)

was initially satisfied. In particular, one may take

l . di, α . d−1
i β (16)
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and expect the singularity. However, in our simulations we actually observed singularity

even with di < l, when the necessary for shock formation condition

l(α + d−1
i β) . di max(q), (17)

was not satisfied at t = 0, but it was spontaneously achieved after some preliminary stage

of evolution when max(q) increased just weakly (see numerical results below).

III. NUMERICAL SIMULATIONS

The above hypothesis has been tested by means of direct numerical simulations with

a two-dimensional Hall-MHD code in cylindrical coordinates (z, r). Integration is carried

out with an explicit Runge-Kutta method and a fourth-order finite difference discretization

on an adaptively refined mesh (AMR) with block structure [23]. This technique allows,

at moderate computational costs, an efficient high-resolution coverage of the localized thin

current sheets that are expected to form from the theoretical considerations in the previous

section.

For the simulation runs discussed below, the mesh resolution, which is controlled by

measuring the gradient scale of the magnetic field, typically varied between an equivalent of

2562 points in smooth regions and 32 7682 points at the location of the singularity formation.

The latter correponds to a grid spacing in z-direction of δz = 1.2·10−4. Due to the quadratic

whistler dispersion, a drastic reduction of the integration time step is required under grid

refinement in order to keep the numerical scheme stable, and this stability condition lead to

values of the order of δt ≈ 10−7 in the late stage of the simulations. With up to 106 steps

in a simulation, a run takes about 4 days on 4 AMD Opteron CPU’s.

In order to stabilize the numerical scheme, an artificial hyper-diffusion term has been

added to the equations for the magnetic field and the velocity. This consists of the operator

−aδ∆
2, i.e. the Laplacian squared and scaled with an amplitude aδ which in turn depends

on the local grid spacing δ as aδ = νδ2. Therefore, aδ differs between grid blocks of different

resolution δ, and the entire operator has the same scaling ∝ (δ)−2 as the Hall term, leading

to a consistent stabilization of high-frequency discretization errors on all refinement levels.

Its global magnitude ν was chosen such that aδ = 3.5 · 10−7 on the coarsest grid blocks and

correspondingly smaller on finer blocks.
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Equations (1)–(3) have been closed by the adiabatic plasma pressure w(ρ) = ρ2, and the

particular class of initial conditions for time t = 0,

ρ0(z, r) = 1 (18)

U0(z, r) = v̂(1− r2/2b2)e−z2/2a2−r2/2b2 (19)

V0(z, r) = v̂(rz/2a2)e−z2/2a2−r2/2b2 (20)

β0(z, r) =
[
(a2 − z2)/2a4 + (4b2 − r2)/2b4

]
e−z2/2a2−r2/2b2 (21)

was used. Here, the exponential function localizes all quantities except ρ around z = 0,

r = 0 on length scales a and b, respectively, and the parameter v̂ determines the initial

amplitude for the plasma velocity, which is an incompressible poloidal flow around the

magnetic field torus. It is easily seen that the particular choice v̂di = 1 corresponds to

a configuration without ion vorticity, α = 0, and, as a consequence, the second condition

in (16) for singularity formation is always fulfilled in this case. All simulations employed

a = b = 1/2, and the remaining parameters that have been varied in the simulation are the

normalized ion skin depth, di, and the amplitude of the initial ion velocity, v̂.

Below, we will discuss results from two sets of simulations which use different values of the

remaining parameters di and v̂: The first one is taken with fixed di = 0.2 and v̂ = −5, 0, 5,

respectively. In the second set, the ion intertial length is varied between di = 0, 0.05, 0.2

while the velocity amplitude v̂ is kept fixed to zero. To start, however, we illustrate the

fundamental mechanism that leads to the singularity formation, by addressing a simulation

which employed a reduced induction equation in which only the Hall term is considered.

Physically, this case corresponds to the electron MHD regime with a massless electron fluid

and a background of resting ions, and its evolution is completely described by the Burgers

equation for β.

FIG. 1 shows plots of the toroidal magnetic field component, bϕ, and the radial component

of the electron velocity, ve,r, which, in this reduced system, is proportional to the correspond-

ing current density component jr = −ρ0ve,r/di, for a run with di = 0.2. From these plots,

the mechanism of current sheet formation becomes obvious: On lines r = const, the pro-

file of bϕ is transported parallel to the z-axis while it steepens to, eventually, form a sharp

edge. This edge corresponds to a highly localized current distribution jr = −∂zbϕ, which in

the electron MHD case results from the electron motion alone. The temporal evolution of

max(|jr|)−1, where the maximum is taken over the entire domain [−2, 2] × [0, 2], together
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with the corresponding values obtained from the analytical Burgers-solution are included in

FIG. 2. Evidently, the analytical solution is well reproduced by the computations.

Returning to the full Hall-MHD system, the time histories of max(|jr|)−1 for the three

simulations with fixed di = 0.2 and initial velocity amplitudes of v̂ = −5, 0 and 5, respec-

tively, are shown in FIG. 2. For comparison, the electron MHD run (di = 0.2) discussed

above is also included. In all three cases, the maximum current density finally grows without

indication of saturation and with a growth behavior of at least 1/(t− t?), i.e. a finite time-

singularity. The earlier stages of the runs, however, exhibit characteristic differences: With

v̂ = 0, i.e. initially resting ions, the growth is roughly similar to the pure electron MHD

case, with a slightly slower onset and a faster increase of max(jr) after t ≈ 0.25. Here, the

ion fluid is gradually accelerated by the electromagnetic forces, and its motion contributes

to magnetic flux transport through the convective electric field. In the case of v̂ = 5, the

growth sets in even earlier, leading directly to what seems to be a singularity at around

t ≈ 0.22. Here, the generalized ion vorticity is zero, so that the second condition in Eq.

(16) is clearly satisfied. For v̂ = −5, on the other hand, the initial ion motion counteracts

the Hall term induced flux transport in positive z-direction close to the z-axis. Here, we

observed a rather involved flow pattern resulting from the initial convection and the mag-

netic forces: The plasma is accelerated radially inward and along the negative z-direction,

gets repelled from the z-axis by the increasing thermal pressure and forms a MHD-like slow

shock structure. Despite this strong dynamical behavior, a thin sheet starts to form close to

the z-axis at z ≈ 0.75 and dominates, by amplitude the other current structures related to

the MHD-like evolution, after t ≈ 0.5. The signature of this current sheet is observed in the

magnetic field and becomes more obvious in the close-up plot of the radial electron velocity

(FIG. 3). Thus, even though condition (16) isn’t met by the initial condition, the small scale

structures form in the course of the plasma dynamics and finally collapse in finite time.

FIG. 4 and 5 further illustrate the singularity formation for the case di = 0.2, v̂ = 0 in

terms of the profiles of bϕ and the radial electron velocity component, ve,r at radius r = 0.034.

The steepening of the magnetic field profile during its convection along z is obvious from

these cuts. At the same time, the electron current density blows up, and its maximum

at t = 0.3121 is 30, which is ≈ 75 times the initial maximum value. Also visible is the

formation of a dip in the bϕ-profile trailing behind the steepening gradient. This minimum

is assosiated with a local inversion of the plasma density gradient at the singularity locus
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and can be interpreted as an effect of plasma compressibility.

The second set of simulation runs involves the variation of the ion skin depth di for the

same initial conditions with v̂ = 0, i.e. resting ions. In addition to the previous value of

di = 0.2, we used di = 0.05 and di = 0, where the latter case corresponds to the pure

MHD dynamics. Plots of the growth of max(1/jr)
−1 are given in FIG. 6. Comparing the

cases di = 0.2 and di = 0.05, we find similar behavior, but a later singularity time in the

di = 0.05 case. In addition, the behavior at t ≈ 0.78 deviates from the strict form 1/(t− t?)

which coincides with strong signatures in the ion dynamics, i.e. the ion velocity and mass

density, that stem from the ion response to the current sheet. However, these signatures

appear smooth and have larger length scales than the signature in the current density, and

no clear indication of a suppression of the singularity tendency could be found here. Finally

addressing the pure MHD run with di = 0, the data show significant growth of the current

density as well. A logarithmic fit to the current density (now shown here) reveals exponential

growth between t = 1 and t ≈ 1.4, and the simulation data show the formation of a current

sheet in conjunction with compressible shocks that form on the leading edges of diverging

plasma flows along the z-axis. Thus, the behavior in this case is definitively different from

the singularities found in the Hall-MHD cases.

IV. SUMMARY

In this paper, we have demonstrated the tendency towards finite time singularities in

axisymmetric Hall-MHD configurations. The underlying fundamental mechamism was iden-

tified to be the electron dynamics described by the Hall term in Ohm’s law which in this

geometry leads to a Burgers like structure of the induction equation. Using numerical sim-

ulations of the complete Hall-MHD equations it could be shown that this mechanism is

generic for a wide class of initial conditions. The potential to create small structures on

short time scales demonstrates the relevance of the Hall term in collisionless plasma system

for many settings like fast magnetic reconnection or filamentation processes [24].
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FIG. 1: Plots of the toroidal magnetic field bϕ (left) and the radial electron velocity component

(right) at times t = 0 (upper) and t = 0.35 (lower) for the electron MHD run. The steepening

of the bϕ-profile corresponds to current sheet formation. Ranges of bϕ are [−1.27, 0.081] at both

times (colors blue to red), while the electron velocity starts with [−0.39, 0.39] at t = 0 and grows

to [−0.25, 3.95] at t = 0.35.
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FIG. 2: Time evolution of max(|jr|)−1 for Hall-MHD runs with di = 0.2 and v̂ = −5, 0, and

5, respectively. Also shown is the Electron-MHD run (squares) together with the corresponding

analytical solution (line).
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FIG. 3: Magnetic field, bϕ, (left) and radial electron velocity component, ve,r (right) at time t = 0.6

for the run with di = 0.2, v̂ = −5. The negative z-direction is to the right, positive r to the left.
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FIG. 4: bϕ vs. z at r = 0.034 and times t = 0.276 (solid), 0.2977, 0.3084, 0.3113 and 0.3121 respec-

tively, for the run with di = 0.2, v̂ = 0. The curves illustrate the shock-like steepening of bϕ in

time. Note that the computational domain covers z ∈ [−2, 2].
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FIG. 5: Electron velocity component ver vs. z at r = 0.034 and times t = 0.3084 (solid), 0.3113

and 0.3121 respectively, for the run with di = 0.2, v̂ = 0. The initial maximum of ver is 0.39.
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FIG. 6: Growth of max(|jr|) for runs with v̂ = 0 and di = 0 (MHD), 0.05 and 0.2, respectively.
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